New insight into stretch induced structural evolution of α trans-1,4-polyisoprene characterized by real time synchrotron WAXS and SAXS measurements

  • Geng-Sheng Weng
  • Jin-Biao Bao
  • Yu-Ci Xu
  • Zhong-Ren Chen
Original Paper


Real time synchrotron wide angle and small angle X-ray scattering (WAXS and SAXS, respectively) were used to characterize the stretch induced structural evolution of α trans-1,4-polyisoprene (trans-PI). 2D WAXS results indicated two ensembles of crystalline modifications with distinctive orientation modes coexisted during stretching. Stretching transformed part of the monoclinic α phase into highly oriented orthorhombic β phase at strain ε = ~0.4. The β phase had rather high orientational degree with polymer chains parallel to the stretching direction, while the orientational degree of α phase was much lower. Complemented by qualitative 2D SAXS analysis, it was found that amorphous layer deformation and intralamellar chain slip dominated at different stretching stage. The melt and recrystallization process of α phase which led to the formation of β phase was also investigated. Formation of two interpenetrating networks of crystalline skeleton (constructed by residual α and β crystals) and amorphous entanglement accounted for the stress-hardening in the late stage.


α trans-1,4-polyisoprene Structural evolution Synchrotron radiation measurement 



The authors are grateful for the financial support of Science and Technology Innovation Platform Project of Ningbo-Super Bionic Material Technology and Its Application in Marine Disaster Prevention and Mitigation (Grant No. 2011A31002), the National Recruitment Program of Global Experts (1000 Plan) and K.C. Wong Magna Fund of Ningbo University. Prof. Liangbin Li, Guoqiang Pan (NSRL) and Jie Wang (SSRF) are warmly thanked for their help on synchrotron WAXD and SAXS testing.


  1. 1.
    Meijer HEH, Govaert LE (2005) Prog Polym Sci 30:915–938CrossRefGoogle Scholar
  2. 2.
    Chodák I (1998) Prog Polym Sci 23:1409–1442CrossRefGoogle Scholar
  3. 3.
    Na B, Li ZJ, Lv RH, Tian NN, Zou SF (2011) J Polym Res 18:2103–2108CrossRefGoogle Scholar
  4. 4.
    Wu Q, Chen N, Wang Q (2010) J Polym Res 17:903–909CrossRefGoogle Scholar
  5. 5.
    Wang SG, Zhang ZY, Dong ZZ, Yuan QH, Song ZH, Xiao CF (2008) J Polym Res 15:21–25CrossRefGoogle Scholar
  6. 6.
    Auriemma F, De Rosa C, Esposito S, Mitchell GR (2007) Angew Chem Int Ed 46:4325–4328CrossRefGoogle Scholar
  7. 7.
    Pathak A, Saxena V, Tandon P, Gupta VD (2006) Polymer 47:5154–5160CrossRefGoogle Scholar
  8. 8.
    Cerveny S, Zinck P, Terrier M, Arrese-Igor S, Alegría A, Colmenero J (2008) Macromolecules 41:8669–8676CrossRefGoogle Scholar
  9. 9.
    Nikitin VN, Volchek BZ (1966) Zhurnal Prikladnoi Spektroskopii 4:546–553Google Scholar
  10. 10.
    Davies CKL, Long OE (1977) J Mater Sci 12:2165–2183CrossRefGoogle Scholar
  11. 11.
    Martuscelli E, Mancarella C (1973) Polymer 14:71–77CrossRefGoogle Scholar
  12. 12.
    Takahashi Y, Sato T, Tadokoro H (1973) J Polym Sci Polym Phys 11:233–248CrossRefGoogle Scholar
  13. 13.
    Gent AN (1966) J Polym Sci Polym Phys 4:447–464Google Scholar
  14. 14.
    Seguela R (2005) J Macromol Sci C Polym Rev 45:263–287CrossRefGoogle Scholar
  15. 15.
    Reddy KR, Tashiro K, Sakurai T, Yamaguchi N, Sasaki S, Masunaga H, Takata M (2009) Macromolecules 42:4191–4199CrossRefGoogle Scholar
  16. 16.
    Wasanasuk K, Tashiro K, Hanesaka M, Ohhara T, Kurihara K, Kuroki R, Tamada T, Ozeki T, Kanamoto T (2011) Macromolecules 44:6441–6452CrossRefGoogle Scholar
  17. 17.
    Ratri PJ, Tashiro K, Iguchi M (2012) Polymer 53:3548–3558CrossRefGoogle Scholar
  18. 18.
    Chaturvedi PN (1992) J Mater Sci Lett 11:1692–1695CrossRefGoogle Scholar
  19. 19.
    Vainshtein BK (1966) Diffraction of X-rays by chain molecules. Elsevier, New YorkGoogle Scholar
  20. 20.
    Gedde UW (1995) Polymer physics. Chapman & Hall, LondonGoogle Scholar
  21. 21.
    Weng GS, Huang GS, Qu LL, Nie YJ, Wu JR (2010) J Phys Chem B 114:7179–7188CrossRefGoogle Scholar
  22. 22.
    Lin L, Argon AS (1994) J Mater Sci 29:294–323CrossRefGoogle Scholar
  23. 23.
    Galeski A, Bartczak Z, Argon AS, Cohen RE (1992) Macromolecules 25:5705–5718CrossRefGoogle Scholar
  24. 24.
    Hong K, Rastogi A, Strobl G (2004) Macromolecules 37:10174–10179CrossRefGoogle Scholar
  25. 25.
    Gauther Miri V, Seguela R (1997) Macromolecules 30:1158–1167CrossRefGoogle Scholar
  26. 26.
    Jiang ZY, Tang YJ, Men YF, Enderle H, Lilge D, Roth SV, Gehrke R, Rieger J (2007) Macromolecules 40:7263–7269CrossRefGoogle Scholar
  27. 27.
    Jiang ZY, Tang YJ, Rieger J, Enderle H, Lilge D, Roth SV, Gehrke R, Heckmann W, Men YF (2010) Macromolecules 43:4727–4732CrossRefGoogle Scholar
  28. 28.
    Men YF, Rieger J, Strobl G (2003) Phys Rev Lett 91:095502-1-4.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Faculty of Materials and Chemical EngineeringNingbo UniversityNingboPeople’s Republic of China

Personalised recommendations