Skip to main content
Log in

New insight into stretch induced structural evolution of α trans-1,4-polyisoprene characterized by real time synchrotron WAXS and SAXS measurements

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Real time synchrotron wide angle and small angle X-ray scattering (WAXS and SAXS, respectively) were used to characterize the stretch induced structural evolution of α trans-1,4-polyisoprene (trans-PI). 2D WAXS results indicated two ensembles of crystalline modifications with distinctive orientation modes coexisted during stretching. Stretching transformed part of the monoclinic α phase into highly oriented orthorhombic β phase at strain ε = ~0.4. The β phase had rather high orientational degree with polymer chains parallel to the stretching direction, while the orientational degree of α phase was much lower. Complemented by qualitative 2D SAXS analysis, it was found that amorphous layer deformation and intralamellar chain slip dominated at different stretching stage. The melt and recrystallization process of α phase which led to the formation of β phase was also investigated. Formation of two interpenetrating networks of crystalline skeleton (constructed by residual α and β crystals) and amorphous entanglement accounted for the stress-hardening in the late stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Meijer HEH, Govaert LE (2005) Prog Polym Sci 30:915–938

    Article  CAS  Google Scholar 

  2. Chodák I (1998) Prog Polym Sci 23:1409–1442

    Article  Google Scholar 

  3. Na B, Li ZJ, Lv RH, Tian NN, Zou SF (2011) J Polym Res 18:2103–2108

    Article  CAS  Google Scholar 

  4. Wu Q, Chen N, Wang Q (2010) J Polym Res 17:903–909

    Article  CAS  Google Scholar 

  5. Wang SG, Zhang ZY, Dong ZZ, Yuan QH, Song ZH, Xiao CF (2008) J Polym Res 15:21–25

    Article  CAS  Google Scholar 

  6. Auriemma F, De Rosa C, Esposito S, Mitchell GR (2007) Angew Chem Int Ed 46:4325–4328

    Article  CAS  Google Scholar 

  7. Pathak A, Saxena V, Tandon P, Gupta VD (2006) Polymer 47:5154–5160

    Article  CAS  Google Scholar 

  8. Cerveny S, Zinck P, Terrier M, Arrese-Igor S, Alegría A, Colmenero J (2008) Macromolecules 41:8669–8676

    Article  CAS  Google Scholar 

  9. Nikitin VN, Volchek BZ (1966) Zhurnal Prikladnoi Spektroskopii 4:546–553

    CAS  Google Scholar 

  10. Davies CKL, Long OE (1977) J Mater Sci 12:2165–2183

    Article  CAS  Google Scholar 

  11. Martuscelli E, Mancarella C (1973) Polymer 14:71–77

    Article  CAS  Google Scholar 

  12. Takahashi Y, Sato T, Tadokoro H (1973) J Polym Sci Polym Phys 11:233–248

    Article  CAS  Google Scholar 

  13. Gent AN (1966) J Polym Sci Polym Phys 4:447–464

    CAS  Google Scholar 

  14. Seguela R (2005) J Macromol Sci C Polym Rev 45:263–287

    Article  Google Scholar 

  15. Reddy KR, Tashiro K, Sakurai T, Yamaguchi N, Sasaki S, Masunaga H, Takata M (2009) Macromolecules 42:4191–4199

    Article  CAS  Google Scholar 

  16. Wasanasuk K, Tashiro K, Hanesaka M, Ohhara T, Kurihara K, Kuroki R, Tamada T, Ozeki T, Kanamoto T (2011) Macromolecules 44:6441–6452

    Article  CAS  Google Scholar 

  17. Ratri PJ, Tashiro K, Iguchi M (2012) Polymer 53:3548–3558

    Article  CAS  Google Scholar 

  18. Chaturvedi PN (1992) J Mater Sci Lett 11:1692–1695

    Article  CAS  Google Scholar 

  19. Vainshtein BK (1966) Diffraction of X-rays by chain molecules. Elsevier, New York

    Google Scholar 

  20. Gedde UW (1995) Polymer physics. Chapman & Hall, London

    Google Scholar 

  21. Weng GS, Huang GS, Qu LL, Nie YJ, Wu JR (2010) J Phys Chem B 114:7179–7188

    Article  CAS  Google Scholar 

  22. Lin L, Argon AS (1994) J Mater Sci 29:294–323

    Article  CAS  Google Scholar 

  23. Galeski A, Bartczak Z, Argon AS, Cohen RE (1992) Macromolecules 25:5705–5718

    Article  CAS  Google Scholar 

  24. Hong K, Rastogi A, Strobl G (2004) Macromolecules 37:10174–10179

    Article  CAS  Google Scholar 

  25. Gauther Miri V, Seguela R (1997) Macromolecules 30:1158–1167

    Article  Google Scholar 

  26. Jiang ZY, Tang YJ, Men YF, Enderle H, Lilge D, Roth SV, Gehrke R, Rieger J (2007) Macromolecules 40:7263–7269

    Article  CAS  Google Scholar 

  27. Jiang ZY, Tang YJ, Rieger J, Enderle H, Lilge D, Roth SV, Gehrke R, Heckmann W, Men YF (2010) Macromolecules 43:4727–4732

    Article  CAS  Google Scholar 

  28. Men YF, Rieger J, Strobl G (2003) Phys Rev Lett 91:095502-1-4.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of Science and Technology Innovation Platform Project of Ningbo-Super Bionic Material Technology and Its Application in Marine Disaster Prevention and Mitigation (Grant No. 2011A31002), the National Recruitment Program of Global Experts (1000 Plan) and K.C. Wong Magna Fund of Ningbo University. Prof. Liangbin Li, Guoqiang Pan (NSRL) and Jie Wang (SSRF) are warmly thanked for their help on synchrotron WAXD and SAXS testing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Geng-Sheng Weng or Zhong-Ren Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weng, GS., Bao, JB., Xu, YC. et al. New insight into stretch induced structural evolution of α trans-1,4-polyisoprene characterized by real time synchrotron WAXS and SAXS measurements. J Polym Res 20, 104 (2013). https://doi.org/10.1007/s10965-013-0104-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0104-x

Keywords

Navigation