Advertisement

Structure, morphology and interfacial behaviour of ethylene/methacrylate copolymers

  • Inês Matos
  • José R. Ascenso
  • MANDA Lemos
  • Zhiqiang Fan
  • Jianchao Yuan
  • José Paulo S. Farinha
  • Francisco Lemos
  • Amélia M. P. S. Gonçalves da Silva
  • Maria M. Marques
Original Paper

Abstract

Two alpha-diimine monometallic Ni catalysts, catalyst 1 and catalyst 2, were studied in the copolymerization reaction of ethylene (E) with methyl methacrylate (MMA). The reaction products of these reactions were characterized using not only the usual techniques such as NMR, GPC and DSC but also the Langmuir balance and AFM. 1H and 13C NMR spectra revealed that both copolymers and mixtures of E and MMA (in a range of 20–70 mol% of MMA) could be obtained with these catalysts. A better insight of the products was possible with 1H DOSY NMR. Since p(E-MMA) copolymers comprising hydrophobic PE blocks and surface active PMMA blocks are amphiphilic, the Langmuir monolayer technique provided further information on the two-dimensional phase behavior of copolymer monolayers at the air-water interface. Additionally, AFM topographic images of the Langmuir-Blodgett (LB) monolayers deposited on mica substrates clearly showed that the morphology of the copolymer LB monolayer is quite different from the corresponding mixture of PE and PMMA homopolymers. These techniques together with molecular modeling calculations allowed us to conclude that with catalyst 2 it was possible to obtain a true block copolymer by a mechanism involving a cationic ester-enolate metal complex as the active species.

Keywords

Copolymers Methylmethacrylate Polar monomers Monolayer studies, AFM 

Notes

Acknowledgments

This work was supported in part by Fundação para a Ciência e Tecnologia (Project PTDC/EQU-EQU/110313/2009) and by FEDER and also through grant PEst-C/EQB/LA0006/2011. Inês Matos is grateful for scholarship SFRH/BPD/34659/2007 by FCT and FSE. We would like to thank Prof Pedro T. Gomes for the contacts for GPC analysis and useful discussions about molecular weight and molecular weight distribution of homo- and copolymers. We also appreciate the support of Borealis in polymerization equipment.

Supplementary material

10965_2013_90_MOESM1_ESM.doc (200 kb)
ESM 1 (DOC 200 kb)

References

  1. 1.
    Gladysz JA (2000) Frontiers in metal-catalyzed polymerization: designer metallocenes, designs on new monomers, demystifying MAO, metathesis déshabille. Chem Rev 100(4):1167–1168, and references thereinCrossRefGoogle Scholar
  2. 2.
    Ittel SD, Johnson LK, Brookhart M (2000) Late-metal catalysts for ethylene homo- and copolymerization. Chem Rev 100(4):1169–1204, and references thereinCrossRefGoogle Scholar
  3. 3.
    Wen H, Li H, Xu S, Xiao S, Li H, Jiang H, Na L, Wu Z (2012) Shear effects on crystallization behavior of poly(ethylene-co-octene) copolymers. J Polym Res 19:9801CrossRefGoogle Scholar
  4. 4.
    Pourtaghi-Zahed H, Zohuri GH (2012) Synthesis and characterization of ethylene-propylene copolymer and polyethylene using α-diimine nickel catalysts. J Polym Res 19:9996CrossRefGoogle Scholar
  5. 5.
    Huang WJ, Chang FC, Chu PPJ (2000) Copolymerization of norbornene with ethylene:a high-resolution liquid NMR, DSC and solid state NMR study. J Polym Res 7:51–56CrossRefGoogle Scholar
  6. 6.
    Boffa LS, Novak BM (2000) Copolymerization of polar monomers with olefins using transition-metal complexes. Chem Rev 100(4):1479–1494, and references thereinCrossRefGoogle Scholar
  7. 7.
    Johnson LK, Mecking S, Brookhart M (1996) Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(II)catalysts. J Am Chem Soc 118:267–268CrossRefGoogle Scholar
  8. 8.
    Mecking S, Johnson LK, Wang L, Brookhart M (1998) Mechanistic studies of the palladium-catalyzed copolymerization of ethylene and R-olefins with methyl acrylate. J Am Chem Soc 120:888–899CrossRefGoogle Scholar
  9. 9.
    Kim I, Hwang J-M, Lee JK, Ha CS, Woo SI (2003) Polymerization of methyl methacrylate with Ni(II) a-Diimine/MAO and Fe(II) and Co(II) Pyridyl Bis(imine)/MAO. Macromol Rapid Commun 24:508–511CrossRefGoogle Scholar
  10. 10.
    Cui L, Yu J, Lv Y, Li G, Zhou S (2012) Syndiotactic polymerization of methyl methacrylate with Ni(acac)2-methylaluminoxane catalyst. J Polym Res 19:9881CrossRefGoogle Scholar
  11. 11.
    Desurmont G, Li Y, Yasuda H, Maruo T, Kanehisa N, Kai Y (2000) Reaction pathway for the formation of binuclear samarocene hydride from monomeric alkyl samarocene derivative and the effective catalysis of samarocene hydride for the block copolymerization of ethylene with polar monomers. Organometallics 19:1811–1813CrossRefGoogle Scholar
  12. 12.
    Frauenrath H, Balk S, Keul H, Höcker H (2001) First synthesis of an AB block copolymer with polyethylene and poly(methyl methacrylate) blocks using a zirconocene catalyst. Macromol Rapid Commun 22:1147–1151CrossRefGoogle Scholar
  13. 13.
    Rodriguez BA, Delferro M, Marks TJ (2009) First synthesis of an AB block copolymer with polyethylene and poly(methyl methacrylate) blocks using a zirconocene catalyst. J Am Chem Soc 131:5902–5919CrossRefGoogle Scholar
  14. 14.
    Matos I (2007) PhD thesis, Technical University of Lisbon, ISTGoogle Scholar
  15. 15.
    Matos I, Fernandes A, Botelho do Rego AM, Ascenso R, Fonseca IF, Lemos F, Marques MM (2010) Heterogeneization of alpha diimines nickel catalysts for the polymerization of ethylene and methylmethacrylate. E-polymers 147:1–18Google Scholar
  16. 16.
    Gonçalves da Silva AM, Filipe EJM, d’Oliveira JMR, Gaspar Martinho JM (1996) Interfacial behavior of poly(styrene)-poly(ethylene oxide) diblock copolymer monolayers at the air-water interface. Hydrophilic block chain length and temperature influence. Langmuir 12:6547–6553CrossRefGoogle Scholar
  17. 17.
    Gonçalves da Silva AM, Simões Gamboa AL, Martinho JMG (1998) Aggregation of poly(styrene)-poly(ethylene oxide) diblock copolymer monolayers at the air-water interface. Langmuir 14:5327–5330CrossRefGoogle Scholar
  18. 18.
    Roberts G (ed) (1990) Langmuir-Blodgett films. Plenum Press, New YorkGoogle Scholar
  19. 19.
    Yasuda H, Ihara E (1995) Rare earth metal initiated polymerizations of polar and nonpolar monomers to give high molecular weight polymers with extremely narrow molecular weight distribution. Macromol Chem Phys 196:2417–2441CrossRefGoogle Scholar
  20. 20.
    Ihara E, Morimoto M, Yasuda H (1995) Living polymerizations and copolymerizations of alkyl acrylates by the unique catalysis of rare earth metal complexes. Macromolecules 28:7886–7892CrossRefGoogle Scholar
  21. 21.
    Collins S, Ward DG (1992) Group-transfer polymerization using cationic zirconocene compounds. J Am Chem Soc 114:5460–5462CrossRefGoogle Scholar
  22. 22.
    Tian G, Boone HW, Novak BM (2001) Neutral palladium complexes as catalysts for olefin-methyl acrylate copolymerization: a cautionary tale. Macromolecules 34:7656–7663CrossRefGoogle Scholar
  23. 23.
    Elia C, Elyashiv-Barad S, Sen A, Lopez-Fernandez R, Albéniz AC, Espinet P (2002) Palladium-based system for the polymerization of acrylates. Scope and mechanism. Organometallics 21:4249–4256CrossRefGoogle Scholar
  24. 24.
    Hehre WJ (2003) A guide to molecular mechanics and quantum chemical calculations. Wavefunction Inc., IrvineGoogle Scholar
  25. 25.
    Gonçalves da Silva AMPS, Lopes SIC, Brogueira P, Prazeres TJV, Beija M, Martinho JMG (2008) Thermo-responsiveness of poly(N, N-diethylacrylamide) polymers at the air–water interface: the effect of a hydrophobic block. J Colloid Interface Sci 327:129–137CrossRefGoogle Scholar
  26. 26.
    Hirabayashi T, Yamauchi K, Yokota K (1990) Synthesis of sequence-ordered copolymer. Synthesis of ethylene-methyl methacrylate alternating copolymer by a polymer reaction. Macromolecules 23:935–939CrossRefGoogle Scholar
  27. 27.
    Antalek B, Hewitt JM, Windig W, Yacobucci PD, Mourey T, Le K (2002) The use of PGSE NMR and DECRA for determining polymer composition. Magn Reson Chem 40:S60–S71CrossRefGoogle Scholar
  28. 28.
    Vasile C, Pascu M (2005) Practical guide to polyethylene, Rapra Technology Limited, Shawbury,Shrewsbury, Shropshire, SY4 4NR, UKGoogle Scholar
  29. 29.
    Biroš J, Larian T, Trkoval J, Pouchly J (1982) Dependance of galss transition temperature of (poly) methyl methacrylates on their tacticity. Colloid Polym Sci 260:27–30CrossRefGoogle Scholar
  30. 30.
    Bovey FA (1972) High resolution NMR of macromolecules. Academic, New YorkGoogle Scholar
  31. 31.
    Randall JC (1977) Polymer sequence determination. C-13 NMR Method. Academic, New YorkGoogle Scholar
  32. 32.
    Gates DP, Svejda A, Onate E, Killian CM, Johnson LK, White PS, Brookhart M (2000) Synthesis of branched polyethylene using (α-Diimine)nickel(II) catalysts: influence of temperature, ethylene pressure, and ligand structure on polymer properties. Macromolecules 33:2320–2334CrossRefGoogle Scholar
  33. 33.
    Liu H-R, Gomes PT, Costa SI, Duarte MT, Branquinho R, Fernandes AC, Chien JCW, Singh RP, Marques MM (2005) Highly active new a-diimine nickel catalyst for the polymerization of a-olefins. J Organomet Chem 690:1314–1323CrossRefGoogle Scholar
  34. 34.
    Marques MM, Fernandes S, Correia SG, Caroço S, Gomes PT, Dias AR, Mano J, Rausch MD, Chien JCW (2001) Synthesis of polar vinyl monomer–olefin copolymers by α-diimine nickel catalyst. Polym Int 50:579–587CrossRefGoogle Scholar
  35. 35.
    Brinkhuis RHG, Schouten AJ (1992) Monolayer behavior of some stereoregular poly(methacrylates). Langmuir 8:2247–2254CrossRefGoogle Scholar
  36. 36.
    Davies JT, Rideal EK (1963) Interfacial phenomena. Academic, New YorkGoogle Scholar
  37. 37.
    Bang J, Peng G, Barnes T (1991) Surface-pressure gradients in monolayers of poly(methyl methacrylate). Langmuir 7:1749–1754CrossRefGoogle Scholar
  38. 38.
    Lopes SIC, Gonçalves da Silva AMPS, Brogueira P, Piçarra S, Martinho JMG (2007) Interfacial behavior of poly(isoprene-b-methyl methacrylate) diblock copolymers and their blends with polystyrene at the air−water interface. Langmuir 23:9310–9319CrossRefGoogle Scholar
  39. 39.
    Kawaguchi M, Sauer BB, Yu H (1989) Polymeric monolayer dynamics at the air water interface by surface light-scattering. Macromolecules 22:1735–1743CrossRefGoogle Scholar
  40. 40.
    Kumaki J, Hashimoto T (2003) Conformational change in an isolated single synthetic polymer chain on a mica surface observed by atomic force microscopy. J Am Chem Soc 125:4907–4917CrossRefGoogle Scholar
  41. 41.
    Seo Y, Im J-H, Lee J-S, Kim J-H (2001) Aggregation behaviors of a polystyrene-b-poly(methyl methacrylate) diblock copolymer at the air/water interface. Macromolecules 34:4842–4851CrossRefGoogle Scholar
  42. 42.
    Miñones J Jr, Conde MM, Yebra-Pimentel E, Trillo JM (2009) Behavior of syndiotactic poly(methyl methacrylate) monolayers at the air/water interface: influence of temperature and molecular weight on the surface pressure−area isotherms and brewster angle microscopy images. J Phys Chem C 113:17455–17463CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Inês Matos
    • 1
    • 3
  • José R. Ascenso
    • 1
  • MANDA Lemos
    • 2
  • Zhiqiang Fan
    • 4
  • Jianchao Yuan
    • 5
  • José Paulo S. Farinha
    • 6
  • Francisco Lemos
    • 2
  • Amélia M. P. S. Gonçalves da Silva
    • 1
  • Maria M. Marques
    • 1
  1. 1.Centro de Química Estrutural, Instituto Superior Técnico, Departamento de Engenharia QuímicaUniversidade Técnica de LisboaLisbonPortugal
  2. 2.IBB, Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Departamento de Engenharia QuímicaUniversidade Técnica de LisboaLisboaPortugal
  3. 3.REQUIMTE/CQFB, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  4. 4.Department of Polymer Science & EngineeringZhejiang UniversityHangzhouChina
  5. 5.Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry & Chemical EngineeringNorthwest Normal UniversityLanzhouChina
  6. 6.Centro de Química-Física Molecular and IN – Institute of Nanosciences and Nanotechnology, Instituto Superior TécnicoUniversidade Técnica de LisboaLisbonPortugal

Personalised recommendations