Journal of Polymer Research

, 19:9986 | Cite as

Preparation of diamine-POSS/Ag hybrid microspheres and its application in epoxy resin

  • Baoliang Zhang
  • Qiuyu Zhang
  • Hepeng Zhang
  • Xingfeng Lei
  • Dezhong Yin
  • Xinlong Fan
  • Lunwei Zhou
Original Paper


The synthesis of polyhedral oligomeric silsesquioxane (POSS) via hydrolytic co-condensation of phenyltriethoxysilane (PTES) and γ-aminopropyltrieth-oxysilane (APS) was presented in this paper. The microspheres with mean diameter of 1.83 μm were precipitated from solvent phase through self-assembly when solvent phase was changed. After the reduction of hydrazine hydrate, POSS/Ag hybrid microspheres were obtained based on the chelation of external amino-groups to silver ions. The hybrid microspheres modified epoxy resin was also studied in the work. The structure and particle size distribution of POSS, feature and silver content of the POSS/Ag core/shell microspheres, heat resistance, thermal conductivity and comprehensive mechanical properties of the epoxy resin modified by diamine-POSS/Ag were characterized by NMR, FTIR, SEM, Laser Particle Sizer, TGA and Flat Heat Conduction Coefficient, Universal Testing Machine. It was found that POSS was cage-like structures with two amino-groups, amino group content was 2.12 mmol/g and the silver conten was 47.96 %, respectively. When Ag addition reached 5 %, thermal conductivity of the modified epoxy resin has increased fourfold four times greater than pure, and the heat resistance increased by 35 °C. Moreover, the bending strength and impact strength of the modified resin were 127 MPa and 11.94 KJ/m2, respectively, compared with pure epoxy resin, both of which have improved.


POSS Hydrolytic co-condensation Self-assembly Epoxy resin modification 



Financial support from the National Natural Science Foundation of China (No.51173146, NO.51173147), National Basic Research Program of China (2010CB635111), Key Project of Space Foundation(CASC201106), the Doctorate Foundation of Northwestern Polytechnical University (CX201210), graduate starting seed fund of Northwestern Polytechnical University (Grant No. z2012158).


  1. 1.
    Scott D (1946) J Am Chem Soc 68(3):356–358CrossRefGoogle Scholar
  2. 2.
    Leu C, Chang Y, Wei K (2003) Macromolecules 36(24):9122–9127CrossRefGoogle Scholar
  3. 3.
    Yoshida M, Roh K, Lahann J (2007) Biomaterials 28(15):2446–2456CrossRefGoogle Scholar
  4. 4.
    Nair B, Pavithran C (2010) Langmuir 26(2):730–735CrossRefGoogle Scholar
  5. 5.
    Ghanbari H, Ahmed M, Cousins B, Hamilton G, Seifalian A (2011) Br J Surg 98:22–22Google Scholar
  6. 6.
    Ni C, Ni G, Zhang L, Mi J, Yao B, Zhu C (2011) J Colloid Interface Sci 362(1):94–99CrossRefGoogle Scholar
  7. 7.
    Song X, Zhou S, Wang Y, Kang W, Cheng B (2012) J Polymer Res 19(1).Google Scholar
  8. 8.
    Jeoung E, Carroll J, Rotello V (2002) Chem Commun 14:1510–1511CrossRefGoogle Scholar
  9. 9.
    Cui L, Collet J, Xu G, Zhu L (2006) Chem Mater 18(15):3503–3512CrossRefGoogle Scholar
  10. 10.
    Zhang W, Fang B, Walther A, Muller A (2009) Macromolecules 42(7):2563–2569CrossRefGoogle Scholar
  11. 11.
    Pang J, Zhang H, Li L, Wu Q, Lin J (2012) New Carbon Materials 27(2):141–145Google Scholar
  12. 12.
    Ervithayasuporn V, Abe J, Wang X, Matsushima T, Murata H, Kawakami Y (2010) Tetrahedron 66(48):9348–9355CrossRefGoogle Scholar
  13. 13.
    Lu X, Tan C, Xu J, He C (2003) Synth Met 138(3):429–440CrossRefGoogle Scholar
  14. 14.
    Cho H, Tokoi Y, Tanaka S, Suematsu H, Suzuki T, Jiang W, Niihara K, Nakayama T (2011) Compos Sci Tech 71(8):1046–1052CrossRefGoogle Scholar
  15. 15.
    Li L, Li X, Yang R (2012) J Appl Polymer Sci 124(5):3807–3814CrossRefGoogle Scholar
  16. 16.
    Jeziorska R, Swierz-Motysia B, Szadkowska A, Marciniec B, Maciejewski H, Dutkiewicz M, Leszczynska I (2011) Polimery 56(11–12):809–816Google Scholar
  17. 17.
    Cai H, Xu K, Liu H, Liu X, Fu Z, Chen M (2011) Polym Compos 32(9):1343–1351CrossRefGoogle Scholar
  18. 18.
    Fasce D, Williams R, Mechin F, Pascault J, Llauro M, Petiaud R (1999) Macromolecules 32(15):4757–4763CrossRefGoogle Scholar
  19. 19.
    Bai X, Sun G, Guan D, Mu J, Liu B, Jiang C, Zhang C (2012) Chem J Chin Univ 33(4):856–860Google Scholar
  20. 20.
    Engstrand J, Lopez A, Engqvist H, Persson C (2012) Biomed Mater 7(3).Google Scholar
  21. 21.
    Liu S, Lang X, Ye H, Zhang S, Zhao J (2005) Eur Polym J 41(5):996–1001CrossRefGoogle Scholar
  22. 22.
    Wang X, Hu Y, Song L, Xing W, Lu H, Lv P, Jie G (2011) J Polymer Res 18(4):721–729CrossRefGoogle Scholar
  23. 23.
    Qian X, Song L, Hu Y, Yuen R (2012) J Polymer Res 19(6).Google Scholar
  24. 24.
    Zhang BL, Zhang QY, Zhang HP, Li XJ, Fan XL, Lei XF (2012) Chin J Inorg Chem 28(3):503–508Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Baoliang Zhang
    • 1
  • Qiuyu Zhang
    • 1
  • Hepeng Zhang
    • 1
  • Xingfeng Lei
    • 1
  • Dezhong Yin
    • 1
  • Xinlong Fan
    • 1
  • Lunwei Zhou
    • 1
  1. 1.Department of Applied Chemistry, College of ScienceNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations