Journal of Polymer Research

, 19:9985 | Cite as

Calcium silicate/poly(ethylene terephthalate) biomaterials via ring-opening polymerization

  • Suebpong Suebwongnat
  • Apichaya Jianprasert
  • Punnama Siriphannon
  • Pathavuth Monvisade
Original Paper


Calcium silicate/poly(ethylene terephthalate) (CS/PET) composites were synthesized via ring-opening polymerization (ROP). CS raw material was synthesized by coprecipitation of calcium nitrate tetrahydrate and tetraethyl orthosilicate. Commercial grade PET was cyclodepolymerized under high dilution technique to cyclic oligo(ethylene terephthalate) (C-OET) raw material. The CS/PET pre-composites were prepared by mixing 60:40 (C6P4) and 50:50 (C5P5) wt% of CS powder and C-OET with the presence of 3 mol% of dibutyl tinoxide catalyst (with respect to the cyclic) then shaped the pre-composites into cylindrical pellets. The presented C-OET in the pre-composites was ring-opening polymerized to obtain PET film covering on the CS grains with the different reaction temperatures as 180, 200 and 250 °C under vacuum for 24 h. Thermogravimetric analysis indicated that the ROP-PET content in the C5P5 and C6P4 composites were about 46–48 and 35–38 wt%, respectively. The melting points (Tm) of ROP-PET of all composites were in a range of 233–246 °C. Compressive strength of the CS/PET composites was significantly increased from 4.8 MPa of the neat CS to 31.0 MPa for the C5P5 composites at the ROP temperature of 250 °C. The CS/PET composites faster induced the continuous-phase formation of hydroxyapatite (HAp) nanocrystals on their surfaces than the HAp/polymer composites. The induction occurred within 7-day soaked in the simulated body fluid (SBF) solution, indicating the bioactivity of the CS/PET composites.


Calcium silicate Poly(ethylene terephthalate) Ring-opening polymerization Biomaterials Bioactivity 



This work was partially supported by the Royal Golden Jubilee Ph.D. Program, Thailand Research Fund. The authors would like to thank the Scientific Instruments Service Center, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Thailand, for XRD, XRF, SEM, 1H-NMR, DSC and TGA analysis.


  1. 1.
    Joon P, Lakes RS (2007) In: Introduction, 3rd edn. Springer, New YorkGoogle Scholar
  2. 2.
    Bonfield W, Grynpas MD, Tully AE, Bowman J, Abram J (1981) Hydroxyapatite reinforced polyethylene-A mechanically compatible implant material for bone replacement. Biomaterials 2:185–186CrossRefGoogle Scholar
  3. 3.
    Bonfield W (1988) Composites for bone replacement. J Biomed Eng 10:522–526CrossRefGoogle Scholar
  4. 4.
    Nenad I, Simonida T, Momcilo D, Miroslav M, Milenko P, Dragan U (1999) Synthesis and properties of hydroxyapatite/poly-L-lactide composite biomaterials. Biomaterials 20:809–816CrossRefGoogle Scholar
  5. 5.
    Taizo F, Yoshitaka M, Tsunoru Y, Yasuo S, Masaki O, Takashi N (2000) Biodegradation behavior of ultra-high-strength hydroxyapatite/poly(L-lactide) composite rods for internal fixation of bone fractures. Biomaterials 21:889–898CrossRefGoogle Scholar
  6. 6.
    Dominic W, Tsutomu F, Junzo T (2001) Preparation of porous composite implant materials by in situ polymerisation of porous apatite containing ɛ-caprolactone or methyl methacrylate. Biomaterials 22:1205–1212CrossRefGoogle Scholar
  7. 7.
    Biqiong C, Kang S (2005) Mechanical and dynamic viscoelastic properties of hydroxyapatite reinforced poly(ɛ-caprolactone). Polym Test 24:978–982CrossRefGoogle Scholar
  8. 8.
    Young-Hae K, In-Kook J, Hyoun-Ee K (2006) Fabrication of poly(ε-caprolactone)/hydroxyapatite scaffold using rapid direct deposition. Mater Lett 60:1184–1187CrossRefGoogle Scholar
  9. 9.
    Wiria FE, Leong KF, Chua CK, Liu Y (2007) Poly-epsilon-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater 3:1–12CrossRefGoogle Scholar
  10. 10.
    Amr MM, Alissa VW, Phillip LW, John JL, Robert RS (2002) Enhanced osteoblast response to a polymethylmethacrylate-hydroxyapatite composite. Biomaterials 23:133–144CrossRefGoogle Scholar
  11. 11.
    Walsh WR, Svehla MJ, Russell J, Saito M, Nakashima T, Gillies RM, Bruce W, Hori R (2004) Cemented fixation with PMMA or Bis-GMA resin hydroxyapatite cement: effect of implant surface roughness. Biomaterials 25:4929–4934CrossRefGoogle Scholar
  12. 12.
    Pathavuth M, Punnama S, Rapee J, Sirirat R (2007) Preparation of hydroxyapatite/poly(methyl methacrylate) and calcium silicate/poly(methyl methacrylate) interpenetrating hybrid composites. J Mater Sci: Mater Med 18:1955–1959CrossRefGoogle Scholar
  13. 13.
    Punnama S, Pathavuth M, Supatra J, Khemchai H (2007) Preparation and characterization of hydroxyapatite/poly(ethylene glutarate) biomaterials. J Biomed Mater Res A 81:381–391Google Scholar
  14. 14.
    Rao KH, Forssberg KSE, Forsling W (1998) Interfacial interactions and mechanical properties of mineral filled polymer composites: wollastonite in PMMA polymer matrix. Colloids Surf A: Physicochem Eng Asp 133:107–117CrossRefGoogle Scholar
  15. 15.
    Jie W, Fangping C, Jung-Woog S, Hua H, Chenglong D, Jiancan S, Changsheng L (2009) Preparation and characterization of bioactive mesoporous wollastonite – Polycaprolactone composite scaffold. Biomaterials 30:1080–1088CrossRefGoogle Scholar
  16. 16.
    Ayako O, Masakazu K, Kazuki N, Tadashi K, Masahiko M, Takeaki M, Takashi N (2003) Bonelike apatite formation on ethylene-vinyl alcohol copolymer modified with silane coupling agent and calcium silicate solutions. Biomaterials 24:1729–1735CrossRefGoogle Scholar
  17. 17.
    Meili Z, Lingzhi Y, Yuan G, Xiqin L, Jiang C (2009) Effects of hydrolysis on dodecyl alcohol modified b-CaSiO3 particles and PDLLA/modified b-CaSiO3 composite films. Compos Sci Technol 69:2547–2553CrossRefGoogle Scholar
  18. 18.
    Haiyan L, Jiang C (2004) Fabrication and characterization of bioactive wollastonite/PHBV composite scaffolds. Biomaterials 25:5473–5480CrossRefGoogle Scholar
  19. 19.
    Rodriguez-Lorenzo LM, Garcia-Carrodeguas R, Rodriguez MA, De AS, Jimenez J, Lopez-Bravo A, Fernandez M, San RJ (2009) Synthesis, characterization, bioactivity and biocompatibility of nanostructured materials based on the wollastonite-poly(ethylmethacrylate-co-vinylpyrrolidone) system. J Biomed Mater Res Part A 88:53–64CrossRefGoogle Scholar
  20. 20.
    Punnama S, Pathavuth M (2009) Poly(ethylene terephthalate)/hydroxyapatite biomaterials: preparation, characterization, and in vitro bioactivity. J Biomed Mater Res Part A 88:464–469Google Scholar
  21. 21.
    Punnama S, Hayashi S, Yasumori A, Okada K (1999) Preparation and sintering of CaSiO3 from coprecipitated powder using NaOH as precipitant and its apatite formation in simulated body fluid solution. J Mater Res 14:529–536CrossRefGoogle Scholar
  22. 22.
    Punnama S, Kameshima Y, Hayashi S, Yasumori A, Okada K (2002) Formation of hydroxyapatite on CaSiO3 powders in simulated body fluid. J Euro Ceram Soc 22:511–520CrossRefGoogle Scholar
  23. 23.
    Punnama S, Kameshima Y, Hayashi S, Yasumori A, Okada K (2002) Comparitive study of the formation of hydroxyapatite in simulated body fluid under static and flowing systems. J Biomed Mater Res 60:175–185CrossRefGoogle Scholar
  24. 24.
    Pathavuth M, Pittaya L (2007) Synthesis of poly(ethylene adipate) and poly(ethylene adipate-co-terephthalate) via ring-opening polymerization. Eur Polym J 43:3408–3414CrossRefGoogle Scholar
  25. 25.
    Warren TP (1973) Organotin compounds: industrial applications and biological investigation. Environ Health Persp 4:61–79CrossRefGoogle Scholar
  26. 26.
    Kerin AJ, Wisnom MR, Adams MA (1998) The compressive strength of articular cartilage. Part H: J Eng Med 212:273–280CrossRefGoogle Scholar
  27. 27.
    Larry LH, June W (1993) In: Introduction, 1st edn. World Scientific, SingaporeGoogle Scholar
  28. 28.
    Punnama S, Yoshikazu K, Atsuo Y, Kiyoshi O, Shigeo H (2002) Formation of hydroxyapatite on CaSiO3 powders in simulated body fluid. J Eur Ceram Soc 22:511–520CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Suebpong Suebwongnat
    • 1
  • Apichaya Jianprasert
    • 2
  • Punnama Siriphannon
    • 1
  • Pathavuth Monvisade
    • 3
  1. 1.Department of Chemistry, Faculty of ScienceKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  2. 2.College of KMITL NanotechnologyKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  3. 3.Department of Chemistry, Faculty of Science, Polymer Synthesis and Functional Materials Research UnitKing Mongkut’s Institute of Technology LadkrabangBangkokThailand

Personalised recommendations