Skip to main content

Advertisement

Log in

Synthesis of biodegradable material poly(lactic acid-co-sorbitol) via direct melt polycondensation and its reaction mechanism

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

To further verify the mechanism of forming multi-core structure during the direct melt copolycondensation of lactic acid (LA) with compounds containing multi-hydroxyl groups, the biodegradable material poly(lactic acid-co-sorbitol) [P(LA-co-SB)] was synthesized by using D,L-lactic acid (D,L-LA) and sorbitol (SB) as starting materials. For the molar feed ratio n(LA)/n(SB) of 120/1, optimal synthetic conditions were investigated. After prepolymerization at 140 °C for 8 h, melt copolymerization with the catalysis of SnO (0.5 wt %) at 160 °C for 6 h gave a polymer with the biggest intrinsic viscosity ([η]) 0.91 dL•g−1. The copolymer P(LA-co-SB)s obtained at different molar feed ratios were characterized by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H-NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The results show that the weight-average molecular weight (Mw) doesn’t increase all the time along with the increasing of the molar feed ratio n(LA)/n(SB), but a Mw peak value exists, which validates again the special Mw peak phenomenon during the direct melt copolycondensation of LA with the monomers containing multifunctional groups (including polyols, e.g. glycerol). However, compared with the results of using glycerol as the core, the mechanism of forming the multi-core copolymer is somewhat different due to SB’s different structure. All the results show that the Mw peak value of the copolymers with multi-core structure is related to not only the number of hydroxyl groups in polyols, but also the reactivity of hydroxyl groups resulted from their type, and the steric hindrance of hydroxyl groups in the polyol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fukuoka A, Dhepe PL (2006) Angew Chem Int Ed 45:5161

    Article  CAS  Google Scholar 

  2. Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411

    Article  CAS  Google Scholar 

  3. Rinaldi R, Schüth F (2009) Energy Environ Sci 2:610

    Article  CAS  Google Scholar 

  4. Radhika GS, Moorthy SN (2009) Trends Carbohydr Res 1:71

    Google Scholar 

  5. Arvanitoyannis I, Nakayama A, Psomiadou E, Kawasaki N, Yamamoto N (1996) Polymer 37:651

    Article  CAS  Google Scholar 

  6. Hao QH, Li F, Li QB, Li Y, Jia L, Yang J, Fang Q, Cao A (2005) Biomacromol 6:2236

    Article  CAS  Google Scholar 

  7. Maharana T, Mohanty B, Negi YS (2009) Prog Polym Sci 34:99

    Article  CAS  Google Scholar 

  8. Konishi S, Yokoi T, Ochiai B, Endo T (2010) Polym Bull 64:435

    Article  CAS  Google Scholar 

  9. Sedlarik V, Kucharczyk P, Kasparkova V, Drbohlav J, Salakova A, Saha P (2010) J Appl Polym Sci 116:1597

    CAS  Google Scholar 

  10. Kucharczyk P, Poljansek I, Sedlarik V, Kasparkova V, Salakova A, Drbohlav J, Cvelbar U, Saha P (2011) J Appl Polym Sci 122:1275

    Article  CAS  Google Scholar 

  11. Cadar O, Paul M, Roman C, Miclean M, Majdik C (2012) Polym Degrad Stab 97:354

    Article  CAS  Google Scholar 

  12. Lin YL, Zhang AQ, Wang LS (2012) J Appl Polym Sci 124:4496

    CAS  Google Scholar 

  13. Harrane A, Belaouedj MA, Meghabar R, Belbachir M (2012) J Polym Res 19:1

    Article  CAS  Google Scholar 

  14. Xu B, Dou HJ, Tao K, Sun K, Lu R, Shi WB (2011) J Polym Res 18:131

    Article  CAS  Google Scholar 

  15. Wang ZY, Zhao HJ, Wang QF, Ye RR, David EF (2010) J Appl Polym Sci 117:1405

    CAS  Google Scholar 

  16. Wang ZY, Luo YF, Ye RR, Song XM (2011) J Polym Res 18:499

    Article  CAS  Google Scholar 

  17. Luo SH, Wang ZY, Mao CX, Huo JP (2011) J Polym Res 18:2093

    Article  CAS  Google Scholar 

  18. Arvanitoyannis L, Nakayama A, Kawasaki N, Yamamoto N (1995) Polymer 36:2947

    Article  CAS  Google Scholar 

  19. Zhang WA, Zheng SX (2007) Polym Bull 58:767

    Article  CAS  Google Scholar 

  20. Gou PF, Zhu WP, Shen ZQ (2008) J Polym Sci Part A Polym Chem 46:2108

    Article  CAS  Google Scholar 

  21. Luo YF, Wang ZY, Ye RR, Luo SH, Yang LT (2011) J Appl Polym Sci 119:1883

    Article  CAS  Google Scholar 

  22. Ye RR, Wang ZY, Wang QF, Yang K, Luo SH (2011) J Appl Polym Sci 121:3662

    Article  CAS  Google Scholar 

  23. Wang ZY, Zhao YM, Wang F, Wang J (2006) J Appl Polym Sci 99:244

    Article  CAS  Google Scholar 

  24. Ye RR, Wang ZY, Yang K, Luo SH (2010) Des Monomers Polym 13:415

    CAS  Google Scholar 

  25. Zhao YM, Wang ZY, Yang F (2005) J Appl Polym Sci 97:195

    Article  CAS  Google Scholar 

  26. Moon SI, Lee CW, Miyamoto M, Kimura Y (2000) J Polym Sci Part A Polym Chem 38:1673

    Article  CAS  Google Scholar 

  27. Moon SI, Lee CW, Taniguchi I, Miyamoto M, Kimura Y (2001) Polymer 42:5059

    Article  CAS  Google Scholar 

  28. Moon SI, Kimura Y (2003) Polym Int 52:299

    Article  CAS  Google Scholar 

  29. Duan JF, Du J, Zheng YB (2007) J Appl Polym Sci 103:3585

    Article  CAS  Google Scholar 

  30. Yilmaz M, Egri S, Yildiz N, Calimli A, Piskin E (2011) J Polym Res 18:975

    Article  CAS  Google Scholar 

  31. Zhou SB, Deng XM, Li XH (2004) J Appl Polym Sci 91:1848

    Article  CAS  Google Scholar 

  32. Yang F, Song FL, Pan YF, Wang ZY, Yang YQ, Zhao YM, Liang SZ, Zhang YM (2010) J Microencapsul 27:133

    Article  CAS  Google Scholar 

  33. Wang N, Wu XS, Lujan-Upton H, Donahue E, Siddiqui A (1997) J Biomater Sci Polym Ed 8:905

    Article  CAS  Google Scholar 

  34. Wang N, Wu XS (1998) J Biomater Sci Polym Ed 9:75

    Article  CAS  Google Scholar 

  35. Inoue K, Yamashiro M, Iji M (2009) J Appl Polym Sci 112:876

    Article  CAS  Google Scholar 

  36. Grijpma DW, Melchels FPW, Hou Q, Jan F (2006) Mater Res Innov 10:321

    CAS  Google Scholar 

  37. Kim ES, Kim BC, Kim SH (2004) J Polym Sci Part B Polym Phys 42:939

    Article  CAS  Google Scholar 

  38. Luo YF, Wang ZY, Song XM, Mao ZZ, Zhao HJ (2008) Chin J Synth Chem 16:166

    CAS  Google Scholar 

  39. Luo SH, Wang ZY, Huang DN, Mao CX, Xiong JF (2011) Adv Mater Res 80–81:370

    Google Scholar 

  40. Luo YF, Wang ZY, Mao ZZ, Song XM (2008) Chin Fine Chem 25:13

    Google Scholar 

Download references

Acknowledgments

We are grateful to the financial support by Guangdong Provincial Natural Science Foundation of China (No. 5300082), the 3rd Talents Special Funds of Guangdong Higher Education (grant number Guangdong-Finance-Education[2011]431), and National Natural Science Foundation of China (No. 20772035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Yang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, SH., Wang, QF., Xiong, JF. et al. Synthesis of biodegradable material poly(lactic acid-co-sorbitol) via direct melt polycondensation and its reaction mechanism. J Polym Res 19, 9962 (2012). https://doi.org/10.1007/s10965-012-9962-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9962-x

Keywords

Navigation