Advertisement

Journal of Polymer Research

, 19:9962 | Cite as

Synthesis of biodegradable material poly(lactic acid-co-sorbitol) via direct melt polycondensation and its reaction mechanism

  • Shi-He Luo
  • Qun-Fang Wang
  • Jin-Feng Xiong
  • Zhao-Yang Wang
Original Paper

Abstract

To further verify the mechanism of forming multi-core structure during the direct melt copolycondensation of lactic acid (LA) with compounds containing multi-hydroxyl groups, the biodegradable material poly(lactic acid-co-sorbitol) [P(LA-co-SB)] was synthesized by using D,L-lactic acid (D,L-LA) and sorbitol (SB) as starting materials. For the molar feed ratio n(LA)/n(SB) of 120/1, optimal synthetic conditions were investigated. After prepolymerization at 140 °C for 8 h, melt copolymerization with the catalysis of SnO (0.5 wt %) at 160 °C for 6 h gave a polymer with the biggest intrinsic viscosity ([η]) 0.91 dL•g−1. The copolymer P(LA-co-SB)s obtained at different molar feed ratios were characterized by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H-NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The results show that the weight-average molecular weight (Mw) doesn’t increase all the time along with the increasing of the molar feed ratio n(LA)/n(SB), but a Mw peak value exists, which validates again the special Mw peak phenomenon during the direct melt copolycondensation of LA with the monomers containing multifunctional groups (including polyols, e.g. glycerol). However, compared with the results of using glycerol as the core, the mechanism of forming the multi-core copolymer is somewhat different due to SB’s different structure. All the results show that the Mw peak value of the copolymers with multi-core structure is related to not only the number of hydroxyl groups in polyols, but also the reactivity of hydroxyl groups resulted from their type, and the steric hindrance of hydroxyl groups in the polyol.

Keywords

Biodegradable material Copolymerization Lactic acid Melt polycondensation Reaction mechanism Polylactic acid Synthesis Sorbitol 

Notes

Acknowledgments

We are grateful to the financial support by Guangdong Provincial Natural Science Foundation of China (No. 5300082), the 3rd Talents Special Funds of Guangdong Higher Education (grant number Guangdong-Finance-Education[2011]431), and National Natural Science Foundation of China (No. 20772035).

References

  1. 1.
    Fukuoka A, Dhepe PL (2006) Angew Chem Int Ed 45:5161CrossRefGoogle Scholar
  2. 2.
    Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411CrossRefGoogle Scholar
  3. 3.
    Rinaldi R, Schüth F (2009) Energy Environ Sci 2:610CrossRefGoogle Scholar
  4. 4.
    Radhika GS, Moorthy SN (2009) Trends Carbohydr Res 1:71Google Scholar
  5. 5.
    Arvanitoyannis I, Nakayama A, Psomiadou E, Kawasaki N, Yamamoto N (1996) Polymer 37:651CrossRefGoogle Scholar
  6. 6.
    Hao QH, Li F, Li QB, Li Y, Jia L, Yang J, Fang Q, Cao A (2005) Biomacromol 6:2236CrossRefGoogle Scholar
  7. 7.
    Maharana T, Mohanty B, Negi YS (2009) Prog Polym Sci 34:99CrossRefGoogle Scholar
  8. 8.
    Konishi S, Yokoi T, Ochiai B, Endo T (2010) Polym Bull 64:435CrossRefGoogle Scholar
  9. 9.
    Sedlarik V, Kucharczyk P, Kasparkova V, Drbohlav J, Salakova A, Saha P (2010) J Appl Polym Sci 116:1597Google Scholar
  10. 10.
    Kucharczyk P, Poljansek I, Sedlarik V, Kasparkova V, Salakova A, Drbohlav J, Cvelbar U, Saha P (2011) J Appl Polym Sci 122:1275CrossRefGoogle Scholar
  11. 11.
    Cadar O, Paul M, Roman C, Miclean M, Majdik C (2012) Polym Degrad Stab 97:354CrossRefGoogle Scholar
  12. 12.
    Lin YL, Zhang AQ, Wang LS (2012) J Appl Polym Sci 124:4496Google Scholar
  13. 13.
    Harrane A, Belaouedj MA, Meghabar R, Belbachir M (2012) J Polym Res 19:1CrossRefGoogle Scholar
  14. 14.
    Xu B, Dou HJ, Tao K, Sun K, Lu R, Shi WB (2011) J Polym Res 18:131CrossRefGoogle Scholar
  15. 15.
    Wang ZY, Zhao HJ, Wang QF, Ye RR, David EF (2010) J Appl Polym Sci 117:1405Google Scholar
  16. 16.
    Wang ZY, Luo YF, Ye RR, Song XM (2011) J Polym Res 18:499CrossRefGoogle Scholar
  17. 17.
    Luo SH, Wang ZY, Mao CX, Huo JP (2011) J Polym Res 18:2093CrossRefGoogle Scholar
  18. 18.
    Arvanitoyannis L, Nakayama A, Kawasaki N, Yamamoto N (1995) Polymer 36:2947CrossRefGoogle Scholar
  19. 19.
    Zhang WA, Zheng SX (2007) Polym Bull 58:767CrossRefGoogle Scholar
  20. 20.
    Gou PF, Zhu WP, Shen ZQ (2008) J Polym Sci Part A Polym Chem 46:2108CrossRefGoogle Scholar
  21. 21.
    Luo YF, Wang ZY, Ye RR, Luo SH, Yang LT (2011) J Appl Polym Sci 119:1883CrossRefGoogle Scholar
  22. 22.
    Ye RR, Wang ZY, Wang QF, Yang K, Luo SH (2011) J Appl Polym Sci 121:3662CrossRefGoogle Scholar
  23. 23.
    Wang ZY, Zhao YM, Wang F, Wang J (2006) J Appl Polym Sci 99:244CrossRefGoogle Scholar
  24. 24.
    Ye RR, Wang ZY, Yang K, Luo SH (2010) Des Monomers Polym 13:415Google Scholar
  25. 25.
    Zhao YM, Wang ZY, Yang F (2005) J Appl Polym Sci 97:195CrossRefGoogle Scholar
  26. 26.
    Moon SI, Lee CW, Miyamoto M, Kimura Y (2000) J Polym Sci Part A Polym Chem 38:1673CrossRefGoogle Scholar
  27. 27.
    Moon SI, Lee CW, Taniguchi I, Miyamoto M, Kimura Y (2001) Polymer 42:5059CrossRefGoogle Scholar
  28. 28.
    Moon SI, Kimura Y (2003) Polym Int 52:299CrossRefGoogle Scholar
  29. 29.
    Duan JF, Du J, Zheng YB (2007) J Appl Polym Sci 103:3585CrossRefGoogle Scholar
  30. 30.
    Yilmaz M, Egri S, Yildiz N, Calimli A, Piskin E (2011) J Polym Res 18:975CrossRefGoogle Scholar
  31. 31.
    Zhou SB, Deng XM, Li XH (2004) J Appl Polym Sci 91:1848CrossRefGoogle Scholar
  32. 32.
    Yang F, Song FL, Pan YF, Wang ZY, Yang YQ, Zhao YM, Liang SZ, Zhang YM (2010) J Microencapsul 27:133CrossRefGoogle Scholar
  33. 33.
    Wang N, Wu XS, Lujan-Upton H, Donahue E, Siddiqui A (1997) J Biomater Sci Polym Ed 8:905CrossRefGoogle Scholar
  34. 34.
    Wang N, Wu XS (1998) J Biomater Sci Polym Ed 9:75CrossRefGoogle Scholar
  35. 35.
    Inoue K, Yamashiro M, Iji M (2009) J Appl Polym Sci 112:876CrossRefGoogle Scholar
  36. 36.
    Grijpma DW, Melchels FPW, Hou Q, Jan F (2006) Mater Res Innov 10:321Google Scholar
  37. 37.
    Kim ES, Kim BC, Kim SH (2004) J Polym Sci Part B Polym Phys 42:939CrossRefGoogle Scholar
  38. 38.
    Luo YF, Wang ZY, Song XM, Mao ZZ, Zhao HJ (2008) Chin J Synth Chem 16:166Google Scholar
  39. 39.
    Luo SH, Wang ZY, Huang DN, Mao CX, Xiong JF (2011) Adv Mater Res 80–81:370Google Scholar
  40. 40.
    Luo YF, Wang ZY, Mao ZZ, Song XM (2008) Chin Fine Chem 25:13Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Shi-He Luo
    • 1
  • Qun-Fang Wang
    • 1
  • Jin-Feng Xiong
    • 1
  • Zhao-Yang Wang
    • 1
  1. 1.School of Chemistry and EnvironmentSouth China Normal UniversityGuangzhouPeople’s Republic of China

Personalised recommendations