Atomic Force Microscopy, thermal, viscoelastic and mechanical properties of HDPE/CaCO3 nanocomposites

  • Achmad Chafidz
  • Ilias Ali
  • M. E. Ali Mohsin
  • Rabeh Elleithy
  • Saeed Al-Zahrani
Original Paper


High Density Polyethylene (HDPE) and calcium carbonate (CaCO3) nanocomposites were prepared from masterbatch by melt blending in twin screw extruder (TSE). The physical properties of HDPE/CaCO3 nanocomposites samples (0, 10 and 20 wt% CaCO3 masterbatch) were investigated. The morphology, thermal, rheological/viscoelastic and mechanical properties of the nanocomposites were characterized by Atomic Force microscopy (AFM), Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analyzer (DMA) as well as tensile test. The AFM images showed homogeneous dispersion and distribution of nano-CaCO3 in the HDPE matrix. The DSC analysis showed a decrease in crystallinity of HDPE/CaCO3 nanocomposites with the increase of CaCO3 loading. This was due to the presence of nanofiller which could restrict the movement of the polymer chain segments and reduced the free volume/spaces available to be occupied by the macromolecules, thus, hindered the crystal growth. However, there was an increase in crystallization temperature about 1–2 °C with the addition of CaCO3. It was suggested that the CaCO3 nanoparticles acted as nucleating agent. In melt rheology study, the complex viscosities of HDPE/CaCO3 nanocomposites were higher than the HDPE matrix and increased with the increasing of CaCO3 masterbatch loading. The DMA results showed that the storage modulus increased with the increasing of nano-CaCO3 contents. The improvement was more than 40 %, as compared to that of neat HDPE. Additionally, the tensile test results showed that with the addition of CaCO3 masterbatch, modulus elasticity of nanocomposites sample increased while yield stress decreased.


HDPE CaCO3 nanoparticles Nanocomposites Masterbatch Melt blending AFM 



The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group project no. RGP-VPP-133. Special thanks to Mr Asif Iqbal from Naizak for AFM analysis.


  1. 1.
    Durmus A, Kasgov A, Macosko CW (2007) Polymer 48:4492–4502CrossRefGoogle Scholar
  2. 2.
    Zebarjad SM, Sajjadi SA (2008) Mater Sci Eng A 475:365–367CrossRefGoogle Scholar
  3. 3.
    Yuan Q, Shah JS, Bertrand KJ, Misra RDK (2009) Macromol Mater Eng 294:141–151CrossRefGoogle Scholar
  4. 4.
    Sahebian S, Zebarjad SM, Khaki JV, Sajjadi SA (2009) J Mater Process Tech 209:1310–1317CrossRefGoogle Scholar
  5. 5.
    Thio YS, Argon AS, Cohen RE, Weinberg M (2002) Polymer 43:3661–3674CrossRefGoogle Scholar
  6. 6.
    Herzig R, Baker WE (1993) J Mater Sci 28:6531–6539CrossRefGoogle Scholar
  7. 7.
    Prashantha K, Soulestin J, Lacrampe MF, Krawczak P, Dupin G, Claes M (2008) Compos Sci Technol 69:1756–1763CrossRefGoogle Scholar
  8. 8.
    Rohlmann CO, Failla MD, Quinzami LM (2006) Polymer 47:7795–7804CrossRefGoogle Scholar
  9. 9.
    Vaia RA, Ishii H, Giannelis EP (1993) Chem Mater 5:1694–1696CrossRefGoogle Scholar
  10. 10.
    Sarazin FP, Ton-That MT, Denault BJ (2005) Polymer 46:11624–11634CrossRefGoogle Scholar
  11. 11.
    Elleithy RH, Ali I, Ali MA, Al-Zahrani SM (2010) J Appl Polym Sci 117:2413–2421Google Scholar
  12. 12.
    Sorrentino L, Berardini F, Capozzoli MR, Amitrano S, Iannace S (2009) J Appl Polym Sci 113:3360–3367CrossRefGoogle Scholar
  13. 13.
    Jipa S, Zaharescu T, Supaphol P (2010) Polym Bull 64:783–790CrossRefGoogle Scholar
  14. 14.
    Zhu W, Zhang G, Yu J, Dai G (2004) J Appl Polym Sci 91:431–438CrossRefGoogle Scholar
  15. 15.
    Wan W, Yu D, Xie Y, Guo X, Zhou W, Cao J (2006) J Appl Polym Sci 102:3480–3488CrossRefGoogle Scholar
  16. 16.
    Xie XL, Liu QX, Li RKY, Zhou XP, Zhang QX, Yu ZZ, Mai YW (2004) Polymer 45:6665–6673CrossRefGoogle Scholar
  17. 17.
    Lam TD, Hoang TV, Quang DT, Kim JS (2009) Mater Sci Eng A 501:87–93CrossRefGoogle Scholar
  18. 18.
    Lazzeri A, Zebarjad SM, Pracella M, Cavalier K, Rosa R (2005) Polymer 46:827–844CrossRefGoogle Scholar
  19. 19.
    Lin Y, Chen H, Chan CM, Wu J (2010) Polymer 51:3277–3284CrossRefGoogle Scholar
  20. 20.
    Kemal I, Whittle A, Buford R, Vodenitcharova T, Hoffman M (2009) Polymer 50:4066–4079CrossRefGoogle Scholar
  21. 21.
    Wang Z, Xie G, Wang X, Li G, Zhang Z (2006) Mater Lett 60:1035–1038CrossRefGoogle Scholar
  22. 22.
    Bartczak Z, Argon AS, Cohen RE, Weinberg M (1999) Polymer 40:2347–2365CrossRefGoogle Scholar
  23. 23.
    Sahebian S, Zebarjad SM, Sajjadi SA, Sherafat Z, Lazzeri A (2007) J Appl Polym Sci 104:3688–3694CrossRefGoogle Scholar
  24. 24.
    Huang JW (2008) J Appl Polym Sci 107:3163–3172CrossRefGoogle Scholar
  25. 25.
    Liu TX, Liu ZH, Ma KX, Shen L, Zeng KY, He CB (2003) Compos Sci Technol 63:331–337CrossRefGoogle Scholar
  26. 26.
    Babcock KL, Prater CB (2010) In: Phase imaging: beyond topography. Veeco Instrument Inc.Google Scholar
  27. 27.
    Maiti M, Bhowmick AK (2006) Polymer 47:6156–6166CrossRefGoogle Scholar
  28. 28.
    Lin B, Sundararaj U (2006) Polym Eng Sci 46:691–702CrossRefGoogle Scholar
  29. 29.
    Faker M, Aghjeh MKR, Ghaffari M, Seyyedi SA (2008) Eur Polym J 44:1834–1842CrossRefGoogle Scholar
  30. 30.
    Abraham R, Thomas SP, Kuryan S, Isac J, Varughese KT, Thomas S (2009) eXPRESS Polym Lett 3:177–189CrossRefGoogle Scholar
  31. 31.
    Dickie RA (1976) J Polym Sci 14:2073–2082Google Scholar
  32. 32.
    Pittenger B, Erina N, Su C (2010) Quantitative mechanical property mapping at the nanoscale with peakforce QNM. BrukerGoogle Scholar
  33. 33.
    Zhang WD, Shen L, Phang IY, Liu T (2004) Macromol 37:256–259CrossRefGoogle Scholar
  34. 34.
    Wunderlich B (1980) Macromolecular physics. Academic, New YorkGoogle Scholar
  35. 35.
    Chafidz A, Ali MA, Elleithy R (2011) J Mater Sci 46:6075–6086CrossRefGoogle Scholar
  36. 36.
    Ehrenstein GW, Riedel G, Trawiel P (2004) Thermal analysis of plastic: theory and practice. Carl Hanser Verlag, MunichGoogle Scholar
  37. 37.
    Ma J, Zhang S, Qi Z, Li G, Hu Y (2002) J Appl Polym Sci 83(9):1978–1985CrossRefGoogle Scholar
  38. 38.
    Xu Y, Shang S, Huang J (2010) Polym Test 29:1007–1013CrossRefGoogle Scholar
  39. 39.
    Wu JY, Wu TM, Chen WY, Tsai SJ, Kuo WF, Chang GY (2005) J Polym Sci 43:3242–3254Google Scholar
  40. 40.
    Avella M, Cosco S, Volpe GD, Errico ME (2005) Adv Polym Tech 24(2):132–144CrossRefGoogle Scholar
  41. 41.
    Perez CJ, Alvarez VA (2009) J Appl Polym Sci 114:3248–3260CrossRefGoogle Scholar
  42. 42.
    Ali MA, Elleithy RH (2011) J Appl Polym Sci 121:27–36CrossRefGoogle Scholar
  43. 43.
    Yazdani H, Morshedian J, Khonakdar HA (2006) Polym Compos doi: 10.1002/pc.20217
  44. 44.
    Zhou Y, Wang S, Zhang Y, Zhang Y, Jiang X, Yi D (2006) J Appl Polym Sci 101:3395–3401CrossRefGoogle Scholar
  45. 45.
    Choi HJ, Kim SG, Hyun YH, Jhon MS (2001) Macromol Rapid Comm 22:320–325CrossRefGoogle Scholar
  46. 46.
    Karamipour S, Ebadi-Dehaghani H, Ashouri D, Mousavian S (2011) Polym Test 30:110–117CrossRefGoogle Scholar
  47. 47.
    Fuad MYA, Hamim H, Zarina R, Ishak ZAM, Hasan A (2010) eXPRESS Polym Lett 4(10):611CrossRefGoogle Scholar
  48. 48.
    Bliznakov ED, White CC, Shaw MT (2000) J Appl Polym Sci 77:3220–3227CrossRefGoogle Scholar
  49. 49.
    GanB M, Satapathy BK, Thunga M, Weidisch R, Potschke P, Jehnichen D (2008) Acta Mater 56:2247–2261CrossRefGoogle Scholar
  50. 50.
    Nitta T, Haga H, Kawabata K, Abe K, Sambongi T (2000) Ultramicroscopy 82:223–226CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Achmad Chafidz
    • 1
    • 2
  • Ilias Ali
    • 2
  • M. E. Ali Mohsin
    • 2
  • Rabeh Elleithy
    • 3
  • Saeed Al-Zahrani
    • 1
    • 2
  1. 1.Department of Chemical EngineeringKing Saud UniversityRiyadhSaudi Arabia
  2. 2.SABIC Polymer Research CenterKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Research and Development DepartmentPrintpack IncWilliamsburgUSA

Personalised recommendations