Extruded poly(ethylene-co-octene)/fly ash composites – value added products from an environmental pollutant

  • S. Anandhan
  • S. Madhava Sundar
  • T. Senthil
  • A. R. Mahendran
  • G. S. Shibulal
Original Paper


Fly ash (FA) is a by-product generated during combustion of coal and has caused serious environmental concerns. In an effort to utilize FA beneficially, we developed composites from an ethylene-octene random copolymer (EOC) and unmodified as well as surface-modified class-F fly ash (MFA) by twin screw extrusion. Addition of 20 wt% of MFA to EOC improves its tensile strength by 150%; also, MFA improves stress at 100% and 300% strains (M100 and M300) of EOC. Thermal stability of EOC matrix is appreciably improved by the addition of either FA or MFA, while the melting behavior is not appreciably influenced by either. Fractography study reveals an improved adhesion between the EOC and MFA particles up to a filler loading of 20%, beyond which the adhesion between EOC and MFA is weakened causing a reduction in mechanical properties. The ‘flammable’ nature of EOC changes to ‘self extinguishing’ on addition of even 10 wt% of FA or MFA, as found out from LOI study.


Fly ash Surface modification Ethylene-octene copolymer Flammability Thermal analysis 



The authors would like to thank Ms. U. Rashmi, Electron microscopy unit, NITK, for her assistance in scanning electron microscopy. Thanks are also due to Dow Elastomers, USA and Bhimrajka Impex, Mumbai, India for the supply of ENGAGETM as a gift for our research.


  1. 1.
    Ward CR, French D (2006) Fuel 85:2268–2277CrossRefGoogle Scholar
  2. 2.
    Alkan C, Arslan M, Cici M, Kaya M, Aksoy M (1995) Resour Conser Recyl 13:147–154CrossRefGoogle Scholar
  3. 3.
    Nath DCD, Bandyopadhyay S, Boughton P, Yu A, Blackburn D, White C (2010) J Mater Sci 45:2625–2632CrossRefGoogle Scholar
  4. 4.
    Nath DCD, Bandyopadhyay S, Yu A, Zeng Q, Das T, Blackburn D, White C (2009) J Mater Sci 44:6078–6089CrossRefGoogle Scholar
  5. 5.
    Ahmaruzzaman M (2010) Prog Energ Combust Sci 36:327–363CrossRefGoogle Scholar
  6. 6.
    Rajan TPD, Pillai RM, Pai BC, Satyanarayana KG, Rohatgi PK (2007) Comp Sci Technol 67:3369–3377CrossRefGoogle Scholar
  7. 7.
    Guhanathan S, Sarojadevi M (2004) Comp Interface 11:43–66CrossRefGoogle Scholar
  8. 8.
    Bishoyee N, Dash A, Mishra A, Patra S, Mahapatra SS (2010) J Polym Environ 18:177–187CrossRefGoogle Scholar
  9. 9.
    Gupta N, Brar BS, Woldesenbet E (2001) Bull Mater Sci 24:219–223CrossRefGoogle Scholar
  10. 10.
    Nath DCD, Bandyopadhyay S, Yu A, Blackburn D, White C (2010) J Appl Polym Sci 115:1510–1517CrossRefGoogle Scholar
  11. 11.
    Nath DCD, Bandyopadhyay S, Yu A, Blackburn D, White C, Varughese S (2010) J Therm Anal Calorim 99:423–429CrossRefGoogle Scholar
  12. 12.
    Nath DCD, Bandyopadhyay S, Boughton P, Yu A, Blackburn D, White C (2010) J Appl Polym Sci 117:114–121Google Scholar
  13. 13.
    Nath DCD, Bandyopadhyay S, Yu A, Blackburn D, White C (2010) J Mater Sci 45:1354–1360CrossRefGoogle Scholar
  14. 14.
    Khan MJ, Al-Juhani AA, Shawabkeh R, Ul-Hamid A, Hussein IA, J Polym Res, 18:2275–2284Google Scholar
  15. 15.
    Datta S (2008) Plastomers. In: Bhowmick AK (ed) Current topics in elastomers research. CRC press, Boca Raton, pp 165–192Google Scholar
  16. 16.
  17. 17.
    Chanda M, Roy SK (2009) Plastics: fundamentals, properties, and testing, first edn. CRC press, Boca Raton, pp 2-91–2-92Google Scholar
  18. 18.
    Mishulovich A, Evanko JL (2003) paper#18, ‘Ceramic tiles from high-carbon fly ash’, International ash utilization symposium, University of KentuckyGoogle Scholar
  19. 19.
    Designation: C618 – 08a, ASTM international, 2008Google Scholar
  20. 20.
    Smith B (1999) Infrared spectral interpretation—a systematic approach. CRC press, Boca RatonGoogle Scholar
  21. 21.
    Palomo A, Grutzeck MW, Blanco MT (1999) Cement Concr Res 29:1323–1329CrossRefGoogle Scholar
  22. 22.
    Nath DCD, Bandyopadhyay S, Gupta S, Yu A, Blackburn D, White C (2010) App Surf Sci 256:2759–2763CrossRefGoogle Scholar
  23. 23.
    Kaczmarek H, Podgorski A (2007) J Photochem Photobiol A 191:209–215CrossRefGoogle Scholar
  24. 24.
    Nielsen LE (1966) J Appl Polym Sci 10:97–103CrossRefGoogle Scholar
  25. 25.
    Smith TL (1959) Trans Soc Rheol 3:113–136CrossRefGoogle Scholar
  26. 26.
    Nicolais L, Narkis M (1971) Polym Eng Sci 11:194–199CrossRefGoogle Scholar
  27. 27.
    Horrocks AR, Tunc M, Price D (1989) Text Prog 18:1–205CrossRefGoogle Scholar
  28. 28.
    Nelson MI (2001) Combust Theor Model 5:59–83CrossRefGoogle Scholar
  29. 29.
    Nelson MI, Sidhu HS, Weber RO, Mercer GN (2001) ANZIAM J 43:105–117Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • S. Anandhan
    • 1
  • S. Madhava Sundar
    • 1
  • T. Senthil
    • 1
  • A. R. Mahendran
    • 2
  • G. S. Shibulal
    • 3
  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of Technology-KarnatakaMangaloreIndia
  2. 2.Kompetenzzentrum Holz GmbHLinzAustria
  3. 3.Rubber Technology CenterIndian Institute of TechnologyKharagpurIndia

Personalised recommendations