Journal of Polymer Research

, 20:70 | Cite as

Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene polymerized with different Ziegler-Natta catalysts

  • Jian Kang
  • Jinggang Gai
  • Jingping Li
  • Shaohua Chen
  • Hongmei Peng
  • Bin Wang
  • Ya Cao
  • Huilin Li
  • Jinyao Chen
  • Feng Yang
  • Ming Xiang
Original Paper


Large amount of work has be published on the dynamic crystallization and melting behavior of β-nucleated polypropylene (β-PP). However, the relationship between molecular structure and dynamic crystallization behavior of β-PP is still not clear. In this study, the dynamic crystallization and melting behavior of two β-nucleated isotactic polypropylene (β-iPP) with nearly same average isotacticity but different stereo-defect distribution, were studied by differential scanning calorimetry (DSC), wide angel X-ray diffraction (WAXD) and temperature modulated DSC (TMDSC). The results indicated that stereo-defect distribution of iPP can significantly influence the dependence of the β-crystal content and thermal stability on the cooling rate. NPP-A with less uniform stereo-defect distribution favors the crystallization at higher temperature region and the formation of β-crystal with high thermal stability in all cooling rates concerned, moreover, the β-crystal content is influenced by cooling rate; for NPP-B with more uniform distribution of stereo-defect, the crystallization temperature and the regular insertion of molecular chains can be reduced in a larger extent. NPP-B is more suitable for the formation of high proportion of β-crystal in both low and high cooling rates, meanwhile, the thermal stability of crystal is sensitive to the cooling rate. This work provides a new insight into the design of β-iPP in dynamic crystallization.


Isotactic polypropylene β-crystal Stereo-defect distribution Dynamic crystallization β-α recrystallization 



We express our sincerely thanks to the Program for New Century Excellent Talents in University (NCET-10-0562).


  1. 1.
    Haque M, Islam S, Islam N (2012) Preparation and characterization of polypropylene composites reinforced with chemically treated coir. J Polym Res. doi: 10.1007/s10965-012-9847-z
  2. 2.
    Zhu L, Xu X, Sheng J (2011) The effect of stretching on the morphological structures and mechanical properties of polypropylene and poly(ethylene-co-octene) blends. J Polym Res 18(6):2469–2475CrossRefGoogle Scholar
  3. 3.
    Kang J, Cao Y, Li HL, Li JP, Chen SH, Yang F, Xiang M (2012) J Polym Res. doi: 10.1007/s10965-012-0037-9
  4. 4.
    Krache R, Benavente R, Lopez-Majada JM, Perena JM, Cerrada ML, Perez E (2007) Competition between α, β, and γ Polymorphs in a β-Nucleated Metallocenic Isotactic Polypropylene. Macromolecules 40(19):6871–6878CrossRefGoogle Scholar
  5. 5.
    Varga J (2002) β-Modification of Isotactic Polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci, Part B: Polym Phys 41(4):1121–1171CrossRefGoogle Scholar
  6. 6.
    Lorenzo AT, Arnal ML, Muller AJ, Lin MC, Chen HL (2011) SAXS/DSC analysis of the lamellar thickness distribution on a SSA thermally fractionated model polyethylene. Macromol Chem Phys 212(18):2009–2016CrossRefGoogle Scholar
  7. 7.
    Muller AJ, Arnal ML (2005) Thermal fractionation of polymers. Prog Polym Sci 30(5):559–603CrossRefGoogle Scholar
  8. 8.
    Lorenzo AT, Muller AJ (2008) Estimation of the nucleation and crystal growth contributions to the overall crystallization energy barrier. J Polym Sci Part B: Polym Phys 46(14):1478–1487CrossRefGoogle Scholar
  9. 9.
    Lorenzo AT, Arnal ML, Sanchez JJ, Muller AJ (2006) Effect of annealing time on the self-nucleation behavior of semicrystalline polymers. J Polym Sci Part B: Polym Phys 44(12):1738–1750CrossRefGoogle Scholar
  10. 10.
    Kang J, Chen JY, Cao Y, Li HL (2010) Effects of ultrasound on the conformation and crystallization behavior of isotactic polypropylene and β-isotactic polypropylene. Polymer 51(1):249–256CrossRefGoogle Scholar
  11. 11.
    Xu JZ, Liang YY, Huang HD, Zhong GJ, Lei J, Chen C, Li ZM (2012) Isothermal and nonisothermal crystallization of isotactic polypropylene/graphene oxide nanosheet nanocomposites. J Polym Res. doi: 10.1007/s10965-012-9975-5
  12. 12.
    Dimeska A, Phillips PJ (2006) High pressure crystallization of random propylene–ethylene copolymers: α–γ Phase diagram. Polymer 47(15):5445–5456CrossRefGoogle Scholar
  13. 13.
    Chen JY, Cao Y, Li HL (2010) The effect of propylene–ethylene copolymers with different comonomer content on melting and crystallization behavior of polypropylene. J Appl Polym Sci 116(2):1172–1183Google Scholar
  14. 14.
    Mileva D, Androsch R, Zhuravlev E, Schick C, Wunderlich B (2012) Homogeneous nucleation and mesophase formation in glassy isotactic polypropylene. Polymer 53(2):277–282CrossRefGoogle Scholar
  15. 15.
    Androsch R, Di Lorenzo ML, Schick C, Wunderlich B (2010) Mesophases in polyethylene, polypropylene, and poly(1-butene). Polymer 51(21):4639–4662CrossRefGoogle Scholar
  16. 16.
    Grein C (2005) Toughness of neat, rubber modified and filled β-nucleated polypropylene: from fundamentals to applications. Adv Polym Sci 188:43–104CrossRefGoogle Scholar
  17. 17.
    Shangguan Y, Song Y, Peng M, Li B, Zheng Q (2005) Formation of β-crystal from nonisothermal crystallization of compression-molded isotactic polypropylene melt. Eur Polym J 41(8):1766–1771CrossRefGoogle Scholar
  18. 18.
    Zhang B, Chen J, Ji F, Zhang X, Zheng G, Shen C (2012) Effects of melt structure on shear-induced β-cylindrites of isotactic polypropylene. Polymer 53(8):1791–1800CrossRefGoogle Scholar
  19. 19.
    Bai H, Luo F, Zhou T, Deng H, Wang K, Fu Q (2011) New insight on the annealing induced microstructural changes and their roles in the toughening of β-form polypropylene. Polymer 52(10):2351–2360CrossRefGoogle Scholar
  20. 20.
    Wang YR, Ni QL, Liu ZH, Zou JD, Zhu XS (2011) Grafting modification and properties of polypropylene with pentaerythritol tetra-acrylate. J Polym Res 18(6):2185–2193CrossRefGoogle Scholar
  21. 21.
    Lu QL, Dou Q (2009) β-crystal formation of isotactic polypropylene induced by N, N’-dicyclohexylsuccinamide. J Polym Res 16(5):555–560CrossRefGoogle Scholar
  22. 22.
    Cheng S, Wen DJ, Wu GQ (2009) Preparation and characterization of fluorinated polypropylene by reactive extrusion with fluorinated acrylate. J Polym Res 16(3):271–278CrossRefGoogle Scholar
  23. 23.
    Cho K, Nabi Saheb D, Yang H, Kang BI, Kim J, Lee SS (2003) Memory effect of locally ordered α-phase in the melting and phase transformation behavior of β-isotactic polypropylene. Polymer 44(14):4053–4059CrossRefGoogle Scholar
  24. 24.
    Yamamoto Y, Inoue Y, Onai T, Doshu C, Takahashi H, Uehara H (2007) Deconvolution analyses of differential scanning calorimetry profiles of β-Crystallized polypropylenes with synchronized X-ray measurements. Macromolecules 40(8):2745–2750CrossRefGoogle Scholar
  25. 25.
    Varga J, Menyhard A (2007) Effect of solubility and nucleating duality of N,N’-Dicyclohexyl-2,6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene. Macromolecules 40(7):2422–2431CrossRefGoogle Scholar
  26. 26.
    Zhang RH, Shi DA, Tsui CP, Tang CY, Tjong SC, Li RKY (2011) The formation of β-polypropylene crystals in a compatibilized blend of isotactic polypropylene and polyamide-6. Polym Eng Sci 51(2):403–410CrossRefGoogle Scholar
  27. 27.
    Zhiyong W, Wanxi Z, Guangyi C, Jicai L, Shu Y, Pei W, Lian L (2010) Crystallization and melting behavior of isotactic polypropylene nucleated with individual and compound nucleating agents. J Therm Anal Calorim 102(2):775–783CrossRefGoogle Scholar
  28. 28.
    Liu M, Guo B, Du M, Chen F, Jia D (2009) Halloysite nanotubes as a novel β-nucleating agent for isotactic polypropylene. Polymer 50(13):3022–3030CrossRefGoogle Scholar
  29. 29.
    Xiao W, Wu P, Feng J, Yao R (2009) Influence of a novel β-nucleating agent on the structure, morphology, and nonisothermal crystallization behavior of isotactic polypropylene. J Appl Polym Sci 111(2):1076–1085CrossRefGoogle Scholar
  30. 30.
    Zhang YF (2008) Crystallization and melting behaviors of isotactic polypropylene nucleated with compound nucleating agents. J Polym Sci Part B: Polym Phys 46(9):911–916CrossRefGoogle Scholar
  31. 31.
    Shen CY, Zhou YG, Zheng GQ, Liu CT, Chen JB, Li Q (2008) Stretching-induced β-crystal of iPP: Influence of stretching ratio. Polym Eng Sci 48(12):2454–2458CrossRefGoogle Scholar
  32. 32.
    Dong M, Guo Z, Su Z, Yu J (2011) The effects of crystallization condition on the microstructure and thermal stability of istactic polypropylene nucleated by β-form nucleating agent. J Appl Polym Sci 119(3):1374–1382CrossRefGoogle Scholar
  33. 33.
    Xiao W, Feng J (2010) Comparative investigation on crystallization conditions dependence of polymorphs composition for β-nucleated propylene/ethylene copolymer and propylene homopolymer. J Appl Polymer Sci 117(6):3247–3254Google Scholar
  34. 34.
    Zhao S, Xin Z (2010) Nucleation characteristics of the α/β compounded nucleating agents and their influences on crystallization behavior and mechanical properties of isotactic polypropylene. J Polym Sci Part B: Polym Phys 48(6):653–665CrossRefGoogle Scholar
  35. 35.
    Naffakh M, Marco C, Ellis G (2011) Novel Polypropylene/Inorganic Fullerene-like WS2 nanocomposites containing a β-Nucleating agent: dynamic crystallization and melting behavior. J Phys Chem B 115(37):10836–10843CrossRefGoogle Scholar
  36. 36.
    Kang J, Yang F, Wu T, Li H, Liu D, Cao Y, Xiang M (2012) Investigation of the stereodefect distribution and conformational behavior of isotactic polypropylene polymerized with different Ziegler–Natta catalysts. J Appl Polym Sci 125(4):3076–3083CrossRefGoogle Scholar
  37. 37.
    Marco C, Gomez MA, Ellis G, Arribas JM (2002) Activity of a β-nucleating agent for isotactic polypropylene and its influence on polymorphic transitions. J Appl Polym Sci 86(3):531–539CrossRefGoogle Scholar
  38. 38.
    Turner-Jones A, Aizlewood J, Beckett D (1964) Makromol Chem 75:134CrossRefGoogle Scholar
  39. 39.
    Li JX, Cheung WL, Jia D (40) A study on the heat of fusion of β-polypropylene. Polymer 40(5):1219–1222CrossRefGoogle Scholar
  40. 40.
    Scherrer P (1918) Bestimmung der Grosse und der inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Gottinger Nachrichten 26:98–100Google Scholar
  41. 41.
    Menyhard A, Varga J, Molnar G (2006) Comparison of different-nucleators for isotactic polypropylene, characterisation by DSC and temperature-modulated DSC (TMDSC) measurements. J Therm Anal Calorim 83(3):625–630CrossRefGoogle Scholar
  42. 42.
    Varga J (1986) Melting memory effect of the β-modification of polypropylene. J Therm Anal Calorim 31(1):165–172CrossRefGoogle Scholar
  43. 43.
    Varga J (1995) Crystallization, melting and supermolecular structure of isotactic polypropylene. Polypropylene Struct Blends Compos 1:56–115CrossRefGoogle Scholar
  44. 44.
    Horvath Z (2010) The effect of molecular mass on the polymorphism and crystalline structure of isotactic polypropylene. eXPRESS Polym Lett 4(2):101–114CrossRefGoogle Scholar
  45. 45.
    Sharon Xin L, Cebe P (1996) Effects of annealing on the disappearance and creation of constrained amorphous phase. Polymer 37(21):4857–4863CrossRefGoogle Scholar
  46. 46.
    Song M (2001) Rigid amorphous phase and low temperature melting endotherm of poly(ethylene terephthalate) studied by modulated differential scanning calorimetry. J Appl Polym Sci 81(11):2779–2785CrossRefGoogle Scholar
  47. 47.
    Xu H, Cebe P (2004) Heat capacity study of isotactic polystyrene: dual reversible crystal melting and relaxation of rigid amorphous fraction. Macromolecules 37(8):2797–2806CrossRefGoogle Scholar
  48. 48.
    Wang X, Zhou J, Li L (2007) Multiple melting behavior of poly(butylene succinate). Eur Polym J 43(8):3163–3170CrossRefGoogle Scholar
  49. 49.
    Righetti MC, Di Lorenzo ML, Tombari E, Angiuli M (2008) The low-temperature endotherm in Poly(ethylene terephthalate): partial melting and rigid amorphous fraction mobilization. The J Phys Chem B 112(14):4233–4241CrossRefGoogle Scholar
  50. 50.
    Di Lorenzo ML, Righetti MC, Cocca M, Wunderlich B (2010) Coupling between crystal melting and rigid amorphous fraction mobilization in Poly(ethylene terephthalate). Macromolecules 43(18):7689–7694CrossRefGoogle Scholar
  51. 51.
    Okazaki I, Wunderlich B (1996) Modulated differential scanning calorimetry in the glass transition region. V. Activation energies and relaxation times of poly(ethylene terephthalate)s. J Polym Sci Part B: Polym Phys 34(17):2941–2952CrossRefGoogle Scholar
  52. 52.
    Androsch R, Wunderlich B (2001) Reversible crystallization and melting at the lateral surface of isotactic polypropylene crystals. Macromolecules 34(17):5950–5960CrossRefGoogle Scholar
  53. 53.
    Hu W, Albrecht T, Strobl G (1999) Reversible surface melting of PE and PEO crystallites indicated by TMDSC. Macromolecules 32(22):7548–7554CrossRefGoogle Scholar
  54. 54.
    Genovese A, Shanks R (2004) Crystallization and melting of isotactic polypropylene in response to temperature modulation. J Therm Anal Calorim 75(1):233–248CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jian Kang
    • 1
  • Jinggang Gai
    • 1
  • Jingping Li
    • 1
  • Shaohua Chen
    • 1
  • Hongmei Peng
    • 1
  • Bin Wang
    • 1
  • Ya Cao
    • 1
  • Huilin Li
    • 1
  • Jinyao Chen
    • 1
  • Feng Yang
    • 1
  • Ming Xiang
    • 1
  1. 1.State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengduPeople’s Republic of China

Personalised recommendations