Advertisement

Journal of Polymer Research

, 19:27 | Cite as

Preparation and physical characterization of SWCNTs-polycarbonate nanocomposites

  • Ayman S. Ayesh
Original Paper

Abstract

This work demonstrates the physical properties for polymer nanocomposites of polycarbonate (PC) and functionalized-SWCNTs at different weight ratios. The results demonstrate that the thermal, rheological, electrical, and optical properties are significantly improved. The improvement over PC properties suggest that the functionalization of SWCNTs using UVO will improve their dispersion in the PC matrix and enhance their interaction with polymer matrix. The storage modulus value at RT is improved by 44 % as the weight fraction of SWCNTs increases up to 1 wt%. Electrical results show that the percolation threshold is around 0.4 % SWCNTs and incorporation of 1 % SWCNTs into PC will decrease PC resistivity up to six order of magnitudes. Incorporation of 1 % SWCNTs into PC will also enhance the UV/visible absorption and will decrease the optical energy gap of neat PC.

Keywords

SWCNTs Polycarbonate Nanocomposites Optical Electrical Rheological 

Notes

Acknowledgments

The author would like to thank the Deanship of Scientific Research at King Faisal University, Al-Ahsa, KSA, for their support. Also, a special thank for Mr. Esam Barqawi (physics department, college of science, KFU, Al-Ahsa, KSA) for his technical help.

References

  1. 1.
    Abu-Abdeen M (2012) Investigation of the rheological, dynamic mechanical, and tensile properties of single-walled carbon nanotubes reinforced poly (vinyl chloride). J Appl Polym Sci 124(4):3192–3199CrossRefGoogle Scholar
  2. 2.
    Barrau S, Demont P, Peigney A, Laurent C, Lacabanne C (2003) DC and AC conductivity of carbon nanotubes-polyepoxy composites. Macromolecules 36(14):5187–5194CrossRefGoogle Scholar
  3. 3.
    Barrau S, Demont P, Perez E, Peigney A, Laurent C, Lacabanne C (2003) Effect of palmitic acid on the electrical conductivity of carbon nanotubes-epoxy resin composites. Macromolecules 36(26):9678–9680CrossRefGoogle Scholar
  4. 4.
    Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69(10):1486–1498CrossRefGoogle Scholar
  5. 5.
    Chen L, Pang XJ, Yu ZL (2007) Study on polycarbonate/multi-walled carbon nanotubes composite produced by melt processing. Mater Sci Eng, A 457(1–2):287–291Google Scholar
  6. 6.
    Abu-Abdeen M, Ayesh AS, Al Jaafari AA (2012) Physical characterizations of semi-conducting conjugated polymer-CNTs nanocomposites. J Polym Res 19(3):1–9CrossRefGoogle Scholar
  7. 7.
    Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Very low conductivity threshold in bulk isotropic single–Walled carbon nanotube–Epoxy composites. Adv Mater 17(9):1186–1191CrossRefGoogle Scholar
  8. 8.
    Gupta V, Miura N (2006) Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors. Electrochim Acta 52(4):1721–1726CrossRefGoogle Scholar
  9. 9.
    Hornbostel B, Pötschke P, Kotz J, Roth S (2006) Single–walled carbon nanotubes/polycarbonate composites: basic electrical and mechanical properties. Phys Status Solidi B 243(13):3445–3451CrossRefGoogle Scholar
  10. 10.
    Hornbostel B, Pötschke P, Kotz J, Roth S (2008) Mechanical properties of triple composites of polycarbonate, single-walled carbon nanotubes and carbon fibres. Phys E: Low-dimensional Systems and Nanostructures 40(7):2434–2439CrossRefGoogle Scholar
  11. 11.
    Huang Y, Li N, Ma Y, Du F, Li F, He X, Lin X, Gao H, Chen Y (2007) The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon 45(8):1614–1621CrossRefGoogle Scholar
  12. 12.
    Jung YJ, Kar S, Talapatra S, Soldano C, Viswanathan G, Li X, Yao Z, Ou FS, Avadhanula A, Vajtai R (2006) Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications. Nano lett 6(3):413–418CrossRefGoogle Scholar
  13. 13.
    El Shafee E, El Gamal M, Isa M (2012) Electrical properties of multi walled carbon nanotubes/poly (vinylidene fluoride/trifluoroethylene) nanocomposites. J Polym Res 19(1):1–8CrossRefGoogle Scholar
  14. 14.
    Bunakov A, Lachinov A, Salikhov R (2004) Current–voltage characteristics of thin poly (biphenyl–4–ylphthalide) films. Macromol Symp 212(1):387–392CrossRefGoogle Scholar
  15. 15.
    Burrows P, Bulovic V, Forrest S, Sapochak L, McCarty D, Thompson M (1994) Reliability and degradation of organic light emitting devices. Appl Phys Lett 65(23):2922–2924CrossRefGoogle Scholar
  16. 16.
    Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123(16):3838–3839CrossRefGoogle Scholar
  17. 17.
    Chen ZK, Yang JP, Ni QQ, Fu SY, Huang YG (2009) Reinforcement of epoxy resins with multi-walled carbon nanotubes for enhancing cryogenic mechanical properties. Polymer 50(19):4753–4759CrossRefGoogle Scholar
  18. 18.
    Ding W, Eitan A, Fisher F, Chen X, Dikin D, Andrews R, Brinson L, Schadler L, Ruoff R (2003) Direct observation of polymer sheathing in carbon nanotube-polycarbonate composites. Nano lett 3(11):1593–1597CrossRefGoogle Scholar
  19. 19.
    Grimes C, Mungle C, Kouzoudis D, Fang S, Eklund P (2000) The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites. Chem Phys Lett 319(5–6):460–464CrossRefGoogle Scholar
  20. 20.
    Kim GM, Michler G, Pötschke P (2005) Deformation processes of ultrahigh porous multiwalled carbon nanotubes/polycarbonate composite fibers prepared by electrospinning. Polymer 46(18):7346–7351CrossRefGoogle Scholar
  21. 21.
    Kim SD, Kim JW, Im JS, Kim YH, Lee YS (2007) A comparative study on properties of multi-walled carbon nanotubes (MWCNTs) modified with acids and oxyfluorination. J Fluor Chem 128(1):60–64CrossRefGoogle Scholar
  22. 22.
    Koizhaiganova RB, Kim HJ, Vasudevan T, Lee MS (2009) Double-walled carbon nanotube (DWCNT)-poly (3-octylthiophene)(P3OT) composites: electrical, optical and structural investigations. Synth Met 159(23–24):2437–2442CrossRefGoogle Scholar
  23. 23.
    Kum CK, Sung YT, Han MS, Kim WN, Lee HS, Lee SJ, Joo J (2006) Effects of morphology on the electrical and mechanical properties of the polycarbonate/multi-walled carbon nanotube composites. Macromol Res 14(4):456–460CrossRefGoogle Scholar
  24. 24.
    Li N, Huang Y, Du F, He X, Lin X, Gao H, Ma Y, Li F, Chen Y, Eklund PC (2006) Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano lett 6(6):1141–1145CrossRefGoogle Scholar
  25. 25.
    López-Mata C, Nicho M, Hu H, Cadenas-Pliego G, García-Hernández E (2005) Optical and morphological properties of chemically synthesized poly3-octylthiophene thin films. Thin Solid Films 490(2):189–195CrossRefGoogle Scholar
  26. 26.
    Meng H, Sui G, Fang P, Yang R (2008) Effects of acid-and diamine-modified MWNTs on the mechanical properties and crystallization behavior of polyamide 6. Polymer 49(2):610–620CrossRefGoogle Scholar
  27. 27.
    Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205CrossRefGoogle Scholar
  28. 28.
    Musa I, Eccleston W, Higgins S (1998) Further analysis of space-charge-limited currents in polybenzo [c] thiophene films. J Appl Phys 83:5558CrossRefGoogle Scholar
  29. 29.
    Najafi E, Kim JY, Han SH, Shin K (2006) UV-ozone treatment of multi-walled carbon nanotubes for enhanced organic solvent dispersion. Colloids Surf, A Physicochem Eng Asp 284:373–378CrossRefGoogle Scholar
  30. 30.
    Najafi E, Kim J-Y, Han S-H, Shin K (2006) UV-ozone treatment of multi-walled carbon nanotubes for enhanced organic solvent dispersion. Colloids Surf, A Physicochem Eng Asp 284–285:373–378CrossRefGoogle Scholar
  31. 31.
    Najafi E, Shin K (2005) Radiation resistant polymer–carbon nanotube nanocomposite thin films. Colloids Surf, A Physicochem Eng Asp 257–258:333–337CrossRefGoogle Scholar
  32. 32.
    Ramasubramaniam R, Chen J, Liu H (2003) Homogeneous carbon nanotube/polymer composites for electrical applications. Appl Phys Lett 83(14):2928–2930CrossRefGoogle Scholar
  33. 33.
    Sandler J, Kirk J, Kinloch I, Shaffer M, Windle A (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(19):5893–5899CrossRefGoogle Scholar
  34. 34.
    Sham ML, Kim JK (2006) Surface functionalities of multi-wall carbon nanotubes after UV/Ozone and TETA treatments. Carbon 44(4):768–777CrossRefGoogle Scholar
  35. 35.
    Singh V, Mohan S, Singh G, Pandey P, Prakash R (2008) Synthesis and characterization of polyaniline–carboxylated PVC composites: Application in development of ammonia sensor. Sensors Actuators B Chem 132(1):99–106CrossRefGoogle Scholar
  36. 36.
    Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43(7):1378–1385CrossRefGoogle Scholar
  37. 37.
    Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401CrossRefGoogle Scholar
  38. 38.
    Sun L, Warren G, O’reilly J, Everett W, Lee S, Davis D, Lagoudas D, Sue HJ (2008) Mechanical properties of surface-functionalized SWCNT/epoxy composites. Carbon 46(2):320–328CrossRefGoogle Scholar
  39. 39.
    Tseng CH, Wang CC, Chen CY (2007) Functionalizing carbon nanotubes by plasma modification for the preparation of covalent-integrated epoxy composites. Chem Mater 19(2):308–315CrossRefGoogle Scholar
  40. 40.
    Yu JG, Huang KL, Yang Q, Liu YF (2009) Solubilizing polycarbonate-modified single-walled carbon nanotubes by simultaneously attaching octadecylamine. Phys E: Low-dimensional Systems and Nanostructures 41(5):771–774CrossRefGoogle Scholar
  41. 41.
    Eitan A, Fisher F, Andrews R, Brinson L, Schadler L (2006) Reinforcement mechanisms in MWCNT-filled polycarbonate. Compos Sci Technol 66(9):1162–1173CrossRefGoogle Scholar
  42. 42.
    Khare R, Mielke SL, Paci JT, Zhang S, Ballarini R, Schatz GC, Belytschko T (2007) Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets. Phys Rev B 75(7):075412CrossRefGoogle Scholar
  43. 43.
    Abu-Abdeen M, Ayesh AS, Aljaafari A (2011) Dielectric relaxation and rheological properties of single walled carbon nanotubes reinforced poly (3-octylthiophene-2, 5-diyl). Journal of Thermoplastic Composite Materials. Published online before print November 29, 2011. doi: 10.1177/0892705711426772
  44. 44.
    Wang S, Liang Z, Pham G, Park YB, Wang B, Zhang C, Kramer L, Funchess P (2007) Controlled nanostructure and high loading of single-walled carbon nanotubes reinforced polycarbonate composite. Nanotechnology 18:095708CrossRefGoogle Scholar
  45. 45.
    Ramanathan T, Liu H, Brinson LC (2005) Functionalized SWNT/polymer nanocomposites for dramatic property improvement. J Polymer Sci, Part B: Polymer Phys 43(17):2269–2279CrossRefGoogle Scholar
  46. 46.
    Ayesh A (2008) Dielectric relaxation and thermal stability of polycarbonate doped with MnCl2 salt. J Thermoplast Compos Mater 21(4):309–322CrossRefGoogle Scholar
  47. 47.
    Ayesh AS (2009) Dielectric properties of polyethylene oxide doped with NH4I salt. Polym J 41(8):616–621CrossRefGoogle Scholar
  48. 48.
    Ayesh AS, Abdel-Rahem R (2010) Effect of Ba (Ti (0.9) Sn 0.1) O 3 ceramic doping on optical, thermal and dielectric properties of polycarbonate host. Bull Mater Sci 33(5):589–595CrossRefGoogle Scholar
  49. 49.
    Ayesh AS, Abdel-Rahem RA (2008) Optical and electrical properties of polycarbonate/MnCl2 composite films. J Plast Film Sheeting 24(2):109CrossRefGoogle Scholar
  50. 50.
    Ayesh AS (2010) Electrical and optical characterization of PMMA doped with Y 0.0025 Si 0.025 Ba 0.9725 (Ti (0.9) Sn 0.1) O 3 ceramic. Chin J Polym Sci 28(4):537–546CrossRefGoogle Scholar
  51. 51.
    Ibrahim S, Al Jaafari AA, Ayesh AS (2011) Physical characterizations of three phase polycarbonate nanocomposites. J Plast Film Sheeting 27(4):275–291CrossRefGoogle Scholar
  52. 52.
    Ibrahim S, Ayesh A, Shoaibi AA (2009) Optoelectrical properties of ferroelectric PC/ceramic composites. J Thermoplast Compos Mater 22(3):335–348CrossRefGoogle Scholar
  53. 53.
    Kraus RG, Emmons ED, Thompson JS, Covington AM (2008) Infrared absorption spectroscopy of polycarbonate at high pressure. J Polymer Sci, Part B: Polymer Phys 46(7):734–742CrossRefGoogle Scholar
  54. 54.
    Qureshi A, Shah S, Pelagade S, Singh NL, Mukherjee S, Tripathi A, Despande UP, Shripathi T (2010) Surface modification of polycarbonate by plasma treatment. J Phys Conf Ser 208:012108CrossRefGoogle Scholar
  55. 55.
    Valentini L, Armentano I, Biagiotti J, Frulloni E, Kenny JM, Santucci S (2003) Frequency dependent electrical transport between conjugated polymer and single-walled carbon nanotubes. Diam Relat Mater 12(9):1601–1609CrossRefGoogle Scholar
  56. 56.
    Sharma A, Bahniwal S, Aggarwal S, Chopra S, Kanjilal D (2011) Synthesis of copper nanoparticles in polycarbonate by ion implantation. Bull Mater Sci 34(4):645–649CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Physics, College of ScienceKing Faisal UniversityAl-AhsaKingdom of Saudi Arabia

Personalised recommendations