Journal of Polymer Research

, 19:21 | Cite as

Modification of tannin based rigid foams using oligomers of a hyperbranched poly(amine-ester)

  • X. Li
  • H. A. Essawy
  • A. Pizzi
  • L. Delmotte
  • K. Rode
  • D. Le Nouen
  • V. Fierro
  • A. Celzard
Original Paper


Tannin-based rigid foam is an excellent alternative for other commercial foams due to price advantage, excellent fire resistance and low thermal conductivity. However, expanding its usability is restricted by its corresponding inferior mechanical properties. In the current work, we proposed a novel modification method which markedly improved its mechanical properties with respect to other approaches. The novel modification depends on boosting the foam network structure by adding oligomeric precursors (hydroxyl-terminated) of a hyperbranched poly(amine-ester) together with glutaraldehyde (crosslinker) as parts of the formulation where it was found that the compressive strength elevated remarkably and reached maximum of 37 % with respect to conventional formulation in absence of these additives or in presence of either of these additives alone. The novel modification method may show promise to obtain such materials for lower price under optimized conditions with respect to other reported modifiers due to the huge functionality of a hyperbranched polymer.


Tannin/furanic foam Hyperbranched polymer Poly(amide-ester) polyol Mechanical property 


  1. 1.
    Frechet JMJ (1994) Science 263:1710–1715CrossRefGoogle Scholar
  2. 2.
    Newkome GR, Moorefield CN, Vogtle F (1996) Dendritic molecules—concepts, syntheses, perspective. Wiley, WeinheimGoogle Scholar
  3. 3.
    Gao C, Yan DY (2004) Prog Polym Sci 29:183–175CrossRefGoogle Scholar
  4. 4.
    Uhrich KE (1997) Trends Polym Sci 5:388–393Google Scholar
  5. 5.
    Voit B (2000) J Polym Sci Part A: Polym Chem 38:2505–2525CrossRefGoogle Scholar
  6. 6.
    Qiu T, Tang L, Fu Z, Tuo X, Li Y, Liu D, Wang W (2004) Polym Adv Techn 15:65–69CrossRefGoogle Scholar
  7. 7.
    Kim YH, Beckerbauer R (1994) Macromolecules 27:1968–1971CrossRefGoogle Scholar
  8. 8.
    Hult A, Johansson M, Malmstrom E (1995) Macromol Symp 98:1159–1161CrossRefGoogle Scholar
  9. 9.
    Tomalia DA, Naylor AM, Goddand WA (1990) Angew Chem Int Ed Engl 29:138–175CrossRefGoogle Scholar
  10. 10.
    Jannerfeldt G, Boogh L, Manson JAE (2000) Polymer 41:7627–7634CrossRefGoogle Scholar
  11. 11.
    Hong Y, Coombs SJ, Cooper-White JJ, Mackay ME, Hawker CJ, Malmstrom E, Rehnberg N (2000) Polymer 41:7705–7713CrossRefGoogle Scholar
  12. 12.
    Gao F, Schricker SR, Tong Y, Culbertson BM (2002) J Macromol Sci Pure Appl Chem 39:267–286CrossRefGoogle Scholar
  13. 13.
    Pasch H, Pizzi A, Rode K (2001) Polymer 42:7531–7539CrossRefGoogle Scholar
  14. 14.
    Meikleham N, Pizzi A (1994) J Appl Polym Sci 53:1547–1556CrossRefGoogle Scholar
  15. 15.
    Tondi G, Pizzi A, Masson E, Celzard A (2008) Polym Degr Stab 93:1539–1543CrossRefGoogle Scholar
  16. 16.
    Zhao W, Fierro V, Pizzi A, Du G, Celzard A (2010) Mater Chem Phys 123:210–217CrossRefGoogle Scholar
  17. 17.
    Li X, Basso MC, Braghiroli F, Fierro V, Pizzi A, Celzard A (2012) Carbon 50:2026–2036CrossRefGoogle Scholar
  18. 18.
    Kim A, Hasan MA, Nahm SH, Cho SS (2005) Compos Struct 71:191–198CrossRefGoogle Scholar
  19. 19.
    Chen C, Kennel E, Stiller A, Stansberry P, Zondlo JW (2006) Carbon 44:1535–1543CrossRefGoogle Scholar
  20. 20.
    Abdalla MO, Ludwick A, Mitchell T (2003) Polymer 44:7353–7359CrossRefGoogle Scholar
  21. 21.
    Ligoure C, Cloitre M, Le Chatelier C, Monti F, Leibler L (2005) Polymer 46:6402–6410CrossRefGoogle Scholar
  22. 22.
    Checchin M, Cecchini C, Cellarosi B, Sam FO (1999) Polym Degrad Stabil 64:573–576CrossRefGoogle Scholar
  23. 23.
    Wright P, Cumming APC (1969) Solid Polyurethane Elastomers. Maclaren and Sons, LondonGoogle Scholar
  24. 24.
    Tondi G, Zhao W, Pizzi A, Du G, Fierro V, Celzard A (2009) Bioresource Technol 100:5162–5169CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.ENSTIB-LERMABUniversity of LorraineEpinal cedex 9France
  2. 2.Department of Polymers and PigmentsNational Research CentreCairoEgypt
  3. 3.IS2M, Institut de Science des Matériaux de MulhouseCNRS LRC 7228MulhouseFrance
  4. 4.Deutsche Kunststoff InstituteDarmstadtGermany
  5. 5.ENSCMu Laboratoire COBMulhouseFrance
  6. 6.IJL-ENSTIBUniversity of LorraineEpinal cedex 9France

Personalised recommendations