Constituting redox initiation system of mercapto-cerium salt and realizing highly effective graft-polymerization of MAA on surfaces of silica gel particles

  • Baojiao Gao
  • Li Fang
  • Xiaohua Wang
  • Jiying Men
Original Paper


In this work, a new and highly efficient method of surface-initiated free radical graft-polymerizations on the surfaces of silica gel particles was put forward, and the graft-polymerization of methacrylic acid (MAA) was conducted. This method was convenient, feasible and highly effective. Coupling agent γ-mercaptopropyltrimethoxysilane(MPTS) was first bonded onto the surfaces of silica gel particles, obtaining the modified particles MPTS-SiO2, onto which mercapto groups were chemically attached, so a redox initiation system of graft-polymerization was constituted by the mercapto group on the surfaces of MPTS-SiO2 particles and the cerium (IV) salt in the solution. And then the surface-initiated free radical graft-polymerization of MAA on the surfaces of silica gel particles was carried out, resulting in the grafted particles PMAA/SiO2 with a very high grafting density (35 g/100 g) of PMAA. The grafted particles PMAA/SiO2 were characterized by infrared spectrum (FTIR), scanning electron microscope (SEM) and thermogravimetric analysis (TGA). The effects of the main factors on the new surface-initiated graft polymerization were emphatically examined, and the corresponding mechanism of the graft-polymerization was investigated in depth. The experimental results show that the mercapto group-cerium salt system analogous to the hydroxyl group-cerium salt system, can also effectively initiate vinyl monomers to be graft-polymerized on the surfaces of solid particles, and furthermore, it is a highly effective surface-initiated graft-polymerization method. In this graft-polymerization system, several factors such as sulfuric acid concentration, the used amount of cerium salt and the reaction temperature affect the grafting density greatly. For the graft-polymerization of MAA, the appropriate reaction conditions are as follows: reaction time of 3 h, reaction temperature of 50 °C, cerium concentration of 5.0 × 10−3 M, acid (H+ ion) concentration of 0.15 M and MAA concentration of 0.5 M.


Mercapto group Cerium salt Surface-initiated graft-polymerization Methacrylic acid Silica gel particles 


  1. 1.
    Li Y, Zhou W-H, Yang H-H, Wang X-R (2009) Talanta 79:141–145CrossRefGoogle Scholar
  2. 2.
    Helminen J, Paatero E (2006) React Funct Polym 66:1021–1032CrossRefGoogle Scholar
  3. 3.
    Guo T-Y, Liu P, Zhu J-W, Song M-D, Zhang B-H (2006) Biomacromolecules 7:1196–1202CrossRefGoogle Scholar
  4. 4.
    Sanchez C, Lebeau B, Chaput F, Boilot J-P (2003) Adv Mater 15:1969–1994CrossRefGoogle Scholar
  5. 5.
    Kaneko Y, Imai Y, Shirai K, Yamauchi T, Tsubokawa N (2006) Colloids Surf A 289:212–218CrossRefGoogle Scholar
  6. 6.
    Sun M, Qiu H-D, Wang L-C, Liu X, Jiang S-X (2009) J Chromatogr A 1216:3904–3909CrossRefGoogle Scholar
  7. 7.
    B-j G, Kong D-l, Zhang Y (2008) J Mol Catal A: Chem 286:143–148CrossRefGoogle Scholar
  8. 8.
    Kaneko Y, Imai Y, Shirai K, Yamauchi T, Tsubokawa N (2006) Colloids Surf A Physicochem Eng Asp 289:212–218CrossRefGoogle Scholar
  9. 9.
    Shao D-D, Xu K-K, Song X-J, Hu J-H, Yang W-L, Wang C-C (2009) J Colloid Interface Sci 336:526–532CrossRefGoogle Scholar
  10. 10.
    Liu P, Wang T-M (2007) J Hazard Mater 149:75–79CrossRefGoogle Scholar
  11. 11.
    Zong S-Z, Cao Y, Zhou Y-M, Ju H-G (2007) Biosens Bioelectron 22:1776–1782CrossRefGoogle Scholar
  12. 12.
    El Harrak A, Carrot G, Oberdisse J, Jestin J, Boué F (2005) Polymer 46:1095–1104CrossRefGoogle Scholar
  13. 13.
    Chinthamanipeta PS, Kobukata S, Nakata H, Shipp DA (2008) Polymer 49:5636–5642CrossRefGoogle Scholar
  14. 14.
    Gromadzki D, Makuška R, Netopilı’k M, Holler P, Lokaj J, Janata M, Štěpánek P (2008) Eur Polym J 44:59–71CrossRefGoogle Scholar
  15. 15.
    Wang Y-M, Wang Y-J, Lu X-B (2008) Polymer 49:474–480CrossRefGoogle Scholar
  16. 16.
    Parnell AJ, Martin SJ, Dang CC, Geoghegan M, Jones RAL, Crook CJ, Howse JR, Ryan AJ (2009) Polymer 50:1005–1014CrossRefGoogle Scholar
  17. 17.
    Gao B-J, Wang J, An F-Q, Liu Q (2008) Polymer 49:1230–1238CrossRefGoogle Scholar
  18. 18.
    Hu S-W, Wang Y, McGinty K, Brittain WJ (2006) Eur Polym J 42:2053–2058CrossRefGoogle Scholar
  19. 19.
    Prucker O, Rühe J (1998) Macromlecules 31:602–613CrossRefGoogle Scholar
  20. 20.
    Bachmann S, Wang HY, Albert K, Partch R (2007) J Colloid Interface Sci 309:169–175CrossRefGoogle Scholar
  21. 21.
    Munro NH, Hanton LR, Moratti SC, Robinson BH (2009) Carbohydr Polym 77:496–505CrossRefGoogle Scholar
  22. 22.
    Jin S-P, Liu M-Z, Chen S-L, Gao C-M (2008) Eur Polym J 44:2162–2170CrossRefGoogle Scholar
  23. 23.
    Lee H, Boyce JR, Nese A, Sheiko SS, Matyjaszewski K (2008) Polymer 49:5490–5496CrossRefGoogle Scholar
  24. 24.
    Behling RE, Williams BA, Staade BL, Wolf LM, Cochran EW (2009) Macromolecules 42:1867–1872CrossRefGoogle Scholar
  25. 25.
    Riachi C, Schqwer N, Klok H-A (2009) Macromolecules 42:8076–8081CrossRefGoogle Scholar
  26. 26.
    Yagci C, Yildiz U (2005) Eur Polym J 41:177–184CrossRefGoogle Scholar
  27. 27.
    Fanta GF, Felker FC, Shogren RL (2004) Carbohydr Polym 56:77–84CrossRefGoogle Scholar
  28. 28.
    Shantha KL, Harding DRK (2002) Carbohydrate Polymer 48:247–253CrossRefGoogle Scholar
  29. 29.
    Gaffar MA, El-Rafie SM, El-Tahlawy KF (2004) Carbohydr Polym 56:387–396CrossRefGoogle Scholar
  30. 30.
    Carrillo F, Defays B, Colom X (2008) Eur Polym J 44:4020–4028CrossRefGoogle Scholar
  31. 31.
    Gao B-J, Hu H-Y, Guo J-F, Li Y-B (2010) Colloids Surf B 77:206–213CrossRefGoogle Scholar
  32. 32.
    Deng B, Li JY, Hou ZC, Yao SD, Shi LQ, Liang GM, Sheng KL (2008) Radiat Phys Chem 77:898–906CrossRefGoogle Scholar
  33. 33.
    Tang E, Cheng G-X, Ma X-L (2006) Powder Technol 161:209–214CrossRefGoogle Scholar
  34. 34.
    Ngo VG, Bressy C, Leroux C, Margaillan A (2009) Polymer 50:3095–3102CrossRefGoogle Scholar
  35. 35.
    Tsubokawa N, Hayashi S, Nishimura J (2002) Prog Org Coat 44:69–74CrossRefGoogle Scholar
  36. 36.
    Hayashi S, Fujiki K, Tsubokawa N (2000) React Funct Polym 46:193–201CrossRefGoogle Scholar
  37. 37.
    Bialk M, Prucker O, Rühe J (2002) Colloids Surf A Physicochem Eng Asp 198–200:543–549CrossRefGoogle Scholar
  38. 38.
    Kaşgöz H, Özgümüş S, Orbay M (2001) Polymer 42:7497–7502CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Baojiao Gao
    • 1
  • Li Fang
    • 2
  • Xiaohua Wang
    • 1
  • Jiying Men
    • 1
  1. 1.Department of Chemical engineeringNorth University of ChinaTaiyuanPeople’ s Republic of China
  2. 2.School of Chemistry and Chemical engineeringShanxi UniversityTaiyuanPeople’ s Republic of China

Personalised recommendations