Advertisement

Journal of Polymer Research

, 19:9805 | Cite as

Electrical properties of multi walled carbon nanotubes/ poly(vinylidene fluoride/trifluoroethylene) nanocomposites

  • E. El Shafee
  • M. El Gamal
  • M. Isa
Original Paper

Abstract

Poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by the method of solution mixing/casting. The dispersity of the MWCNTs in the PVDF-TrFE matrix was investigated using transmission electron microscopy (TEM), revealing that MWCNT are well distributed in the PVDF matrix. Both individual and agglomerations of MWCNT’s were evident. The electrical properties were characterized by ac conductivity measurements. The conductivity was found to obey a percolation-like power law with a percolation threshold below 0.30 wt. %. The electrical conductivity of the neat PVDF-TrFE could be enhanced by seven orders of magnitude, with the addition of only 0.3 wt. % MWCNTs, suggesting the formation of a well-conducting network by the MWCNT’s throughout the insulating polymer matrix. The intercluster polarization and anomalous diffusion models were used to explain the dielectric behaviors of the composites near the percolation threshold, and the analyses of ac conductivity and dielectric constant imply that the intercluster polarization is more applicable to our systems.

Keywords

Nanocomposites Electrical conductivity Percolation threshold Poly(vinylidene fluoride-trifluoroethylene) 

References

  1. 1.
    Moniruzzaman M, Winey KI (2006) Macromolecules 39:5194–5205CrossRefGoogle Scholar
  2. 2.
    Thostenson ET, Li C, Chou TW (2005) Compos Sci Technol 65:491–516CrossRefGoogle Scholar
  3. 3.
    Coleman JN, Curran S, Dalton AB, Davey AP, McCarthy B, Blau W, Barklie RC (1998) Physical Review B—Condensed Matter and Materials Physics 58(12):R7492–R7495CrossRefGoogle Scholar
  4. 4.
    Thostenson ET, Ren Z, Chou T-W (2001) Compos Sci Technol 61:1899CrossRefGoogle Scholar
  5. 5.
    Barrau S, Demont P, Peigney A, Laurent C, Lacabanne C (2003) Macromolecules 23:5187CrossRefGoogle Scholar
  6. 6.
    Breuer O, Sundararaj U (2004) Polymer Compos 25:630–645CrossRefGoogle Scholar
  7. 7.
    Khare R, Bose S (2005) Journal of minerals and Materials Characterization and Engineering 4:31–46Google Scholar
  8. 8.
    Zhang QH, Rastogi S, Chen DJ, Lippits DR, Lemstra PJ (2006) Carbon 44:778CrossRefGoogle Scholar
  9. 9.
    Zhang QH, Lippits DR, Rastogi S (2006) Macromolecules 39:658CrossRefGoogle Scholar
  10. 10.
    Mylraganam K, Zhang LC (2007) Recent Patent on Nanotechnology 1:59–65CrossRefGoogle Scholar
  11. 11.
    Bauhofer W, Kovacs JZ (2009) Compos Sci Technol 69(10):1486–1498CrossRefGoogle Scholar
  12. 12.
    Chen GX, Li YJ, Shimizu H (2007) Carbon 45:2334–2340CrossRefGoogle Scholar
  13. 13.
    Fuan H, Jintu F, Sienting L (2008) PolymTest 27:964–970Google Scholar
  14. 14.
    Giannelis PE, Ansari S (2009) J Polym Sci B: Polym Phys 47:888–897CrossRefGoogle Scholar
  15. 15.
    Levi N, Czerw R, Xing S, Iyer P, Carroll LD (2004) Nano Lett 4:1267–1271CrossRefGoogle Scholar
  16. 16.
    Li Q, Xue Q, Hao L, Gao X, Zheng Q (2008) Compos Sci Technol 68:2290–2296CrossRefGoogle Scholar
  17. 17.
    Almasri A, Ounaies Z, Kim YS, Grunlan J (2008) Macromol Mater Eng 293:123–131CrossRefGoogle Scholar
  18. 18.
    Nam YW, Kim WN, Cho YH (2007) Macromol Symp 249–250:478–484CrossRefGoogle Scholar
  19. 19.
    Hong SM, Hwang SS (2008) J Nanosci Nanotechnol 8:4860–4863CrossRefGoogle Scholar
  20. 20.
    Zhang QM, Li HF, Poh M, Xu HS, Cheng ZY, Xia F, Huang C (2002) Nature 419:284CrossRefGoogle Scholar
  21. 21.
    Zhang QM, Bharti V, Zhao X (1998) Science 280:2101CrossRefGoogle Scholar
  22. 22.
    Naber CG, Tanase C, Blom PWM, Gelinck GH, Marsman AW, Touwslager FJ, Setayesh S, De Leeuw DM (2005) Nat Mater 4:205CrossRefGoogle Scholar
  23. 23.
    Ramaratnam A, Jalili N (2006) Journal of Intelligent Material System and Structure 17:199–208CrossRefGoogle Scholar
  24. 24.
    Zhang SH, Zhang NY, Huang C, Ren KL, Zhang QM (2005) Adv Mater 17:1897CrossRefGoogle Scholar
  25. 25.
    Bunde A, Havlin S (1996) Fractals and disordered systems. Springer, BerlinGoogle Scholar
  26. 26.
    Sahimi M (1994) Applications of percolation theory. Taylor & Francis, LondonGoogle Scholar
  27. 27.
    Kirkpatrick S (1971) Phys Rev Lett 27(25):1722–1725CrossRefGoogle Scholar
  28. 28.
    Webman I, Jortner J, Cohen MH (1977) Phys Rev B 16(6):2593–2596CrossRefGoogle Scholar
  29. 29.
    Bergman DJ, Imry Y (1977) Phys Rev Lett 39(19):1222–1225CrossRefGoogle Scholar
  30. 30.
    Efros AL, Shklovskii BI (1976) Phys Status Solidi B 76(2):475–485CrossRefGoogle Scholar
  31. 31.
    Stroud D, Bergman DJ (1982) Phys Rev B 25(3):2061–2064CrossRefGoogle Scholar
  32. 32.
    Wilkinson D, Langer JS, Sen PN (1983) Phys Rev B 28(2):1081–1087CrossRefGoogle Scholar
  33. 33.
    Gefen Y, Aharony A, Alexander S (1983) Phys Rev Lett 50(1):77–80CrossRefGoogle Scholar
  34. 34.
    Song Y, Noh TW, Lee SI, Gaines JR (1986) Phys Rev B 33(2):904–908CrossRefGoogle Scholar
  35. 35.
    Liu TX, Phang IY, Shen L, Chow SY, Zhang WD (2004) Macromolecules 37:7214–7222CrossRefGoogle Scholar
  36. 36.
    Benaboud K, Achour ME, Carmona F, Salome L (1998) Ann Chim Sci Mat 23:315–318CrossRefGoogle Scholar
  37. 37.
    Sarychev AK, Brouers F (1994) Phys Rev Lett 73:2895–2898CrossRefGoogle Scholar
  38. 38.
    Adriaanse LJ, Reedijk JA, Teunissen PA, Brom HB, Michels MAJ, Brokken-Zijp JMC (1997) Phys Rev Lett 78:1755–1758CrossRefGoogle Scholar
  39. 39.
    Antonucci F, Faiella G, Giordano M, Nicolais L, Pepe G (2007) Macromol Symp 247:172–181CrossRefGoogle Scholar
  40. 40.
    Ha MLP, Grady BP, Lolli G, Resasco DE, Ford TW (2007) Macromol Chem Phys 205:446–456CrossRefGoogle Scholar
  41. 41.
    Flandin L, Prasse T, Schueler R, Schulte K, Bauhofer W, Cavaille JY (1999) Phys Rev B 59(22):14349–14355CrossRefGoogle Scholar
  42. 42.
    Achour ME, Brosseau C (2008) J Appl Phys 103(9): 094103-1–094103-10.Google Scholar
  43. 43.
    Balberg I, Anderson CH, Alexander S, Wagner N (1984) Phys Rev B 30:3933–3943CrossRefGoogle Scholar
  44. 44.
    Bug ALR, Safran SA, Webman I (1985) Phys Rev Lett 54:1412CrossRefGoogle Scholar
  45. 45.
    Dalmas F, Dendievel R, Chazeau L, Cavaille JY, Gauthier C (2006) Acta Mater 54:2923CrossRefGoogle Scholar
  46. 46.
    Berhan L, Sastry AM (2007) Phys Rev E 75(4):41121CrossRefGoogle Scholar
  47. 47.
    Shieha YT, Liua GL, Hwangb KC, Chen CC (2005) Polymer 46:10945–10951CrossRefGoogle Scholar
  48. 48.
    Balberg I, Azulay D, Toker D, Millo O (2004) Int J Mod Phys 18:2091CrossRefGoogle Scholar
  49. 49.
    Bryning MB, Islam MF, Kikkawa JM, Yodth AC (2005) Adv Mater 17:1186CrossRefGoogle Scholar
  50. 50.
    Park M, Kim H, Youngblood JP (2008) Nanotechnology 19:055705CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Chemistry DepartmentFaculty of Science, Cairo UniversityGizaEgypt
  2. 2.Science and Technology CenterCairoEgypt

Personalised recommendations