Journal of Polymer Research

, 19:9799 | Cite as

Isoconversional kinetic analysis of ring-opening polymerization of ε-caprolactone: Steric influence of titanium(IV) alkoxides as initiators

  • Wijitra Meelua
  • Robert Molloy
  • Puttinan Meepowpan
  • Winita Punyodom
Original Paper


Four titanium(IV) alkoxides, namely: Ti(IV) n-propoxide (1), Ti(IV) n-butoxide (2), Ti(IV) tert-butoxide (3), and Ti(IV) 2-ethylhexoxide (4), have been used as initiators in the bulk ring-opening polymerization (ROP) of ε-caprolactone (ε-CL). The influence of the alkoxide group on the course of the ROP of ε-CL was investigated by means of 1H-NMR and differential scanning calorimetry (DSC). The 1H-NMR spectra confirmed that the ROP reaction of ε-CL proceeded via the widely accepted coordination-insertion mechanism for each of the four initiators. Isoconversional methods have been used to evaluate non-isothermal DSC data via the equations of Friedman, Kissinger-Akahira-Sunose (KAS) and Ozawa-Flynn-Wall (OFW). The kinetic studies showed that the polymerization rate for the four initiators (1-4) was in the order of 1 > 2 ≈ 4 > 3. The lowest activation energies (40–47, 42–44, and 49–52 kJ/mol for the Friedman, KAS and OFW methods respectively) were found in the polymerizations using Ti(IV) n-propoxide (1), while the highest activation energies (84–107, 77–87, and 80–91 kJ/mol for the Friedman, KAS and OFW methods respectively) were obtained using Ti(IV) tert-butoxide (3). Differences in the rates of polymerization and the activation energies amongst the four initiators appeared to be governed mainly by the different degrees of steric hindrance in the initiator structure. These results represent important findings regarding the steric influence of the alkoxide groups on the kinetics of the ROP of ε-CL initiated by titanium(IV) alkoxides.


Titanium(IV) alkoxides ε-Caprolactone Ring-opening polymerization Differential scanning calorimetry Isoconversional method Activation energy 



This work was supported by the Center of Excellence for Innovation in Chemistry, Commission on Higher Education, Ministry of Education, and the National Research University Project under Thailand’s Office of the Higher Education Commission, and the Graduate School of Chiang Mai University.


  1. 1.
    Seyednejad H, Ghassemi AH, van Nostrum CF, Vermonden T, Hennink WE (2011) J Controlled Release 152:168–176CrossRefGoogle Scholar
  2. 2.
    Khan JH, Schue F, George GA (2009) Polym Int 58:296–301CrossRefGoogle Scholar
  3. 3.
    Albertsson AC, Varma IK (2003) Biomacromolecules 4:1466–1486CrossRefGoogle Scholar
  4. 4.
    Kricheldorf HR, Berl M, Scharnagl N (1988) Macromolecules 21:286–293CrossRefGoogle Scholar
  5. 5.
    Dubois P, Barakat I, Jerome R, Teyssie P (1993) Macromolecules 26:4407–4412CrossRefGoogle Scholar
  6. 6.
    Kricheldorf HR (2001) Chemosphere 43:49–54CrossRefGoogle Scholar
  7. 7.
    Delcroix D, Couffin A, Susperregui N, Navarro C, Maron L, Martin-Vaca B, Bourissou D (2011) Polym Chem 2:2249–2256CrossRefGoogle Scholar
  8. 8.
    Cheng G, Fan X, Pan W, Liu Y (2010) J Polym Res 17:847–851CrossRefGoogle Scholar
  9. 9.
    Wu J, Yu T-L, Chen C-T, Lin C-C (2006) Coord Chem Rev 250:602–626CrossRefGoogle Scholar
  10. 10.
    Gao A, Mu Y, Zhang J, Yao W (2009) Eur J Inorg Chem 2009:3613–3621CrossRefGoogle Scholar
  11. 11.
    Kleawkla A, Molloy R, Naksata W, Punyodom W (2008) Adv Mat Res 55–57:757–760CrossRefGoogle Scholar
  12. 12.
    Huang B-H, Lin C-N, Hsueh M-L, Athar T, Lin C-C (2006) Polymer 47:6622–6629CrossRefGoogle Scholar
  13. 13.
    Sheng H, Li J, Yao YZY, Shen Q (2009) J Appl Polym Sci 112:454–460CrossRefGoogle Scholar
  14. 14.
    Li P, Zerroukhi A, Chen J, Chalamet Y, Jeanmaire T, Xia Z (2008) J Appl Polym Sci 110:3990–3998CrossRefGoogle Scholar
  15. 15.
    Cayuela J, Bounor-Legare V, Cassagnau P, Michel A (2006) Macromolecules 39:1338–1346CrossRefGoogle Scholar
  16. 16.
    Xia Z, Zerroukhi A, Chalamet Y, Chen J (2008) J Appl Polym Sci 109:1772–1780CrossRefGoogle Scholar
  17. 17.
    Li P, Zerroukhi A, Chen J, Chalamet Y, Jeanmaire T, Xia Z (2008) J Polym Sci Part A: Polym Chem 46:7773–7784CrossRefGoogle Scholar
  18. 18.
    Asandei AD, Chen Y, Adebolu OI, Simpson CP (2008) J Polym Sci Part A: Polym Chem 46:2869–2877CrossRefGoogle Scholar
  19. 19.
    Parssinen A, Kohlmayr M, Leskela M, Lahcini M, Repo T (2010) Polym Chem 1:834–836CrossRefGoogle Scholar
  20. 20.
    Takeuchi D, Nakamura T, Aida T (2000) Macromolecules 33:725–729CrossRefGoogle Scholar
  21. 21.
    Chen C-T, Huang C-A, Huang B-H (2004) Macromolecules 37:7968–7973CrossRefGoogle Scholar
  22. 22.
    Dumklang M, Pattawong N, Punyodom W, Meepowpan P, Molloy R, Hoffman M (2009) Chiang Mai J Sci 36(2):136–148Google Scholar
  23. 23.
    Ramírez-Hernández A, Martínez-Richa A (2010) J Appl Polym Sci 115:2288–2295CrossRefGoogle Scholar
  24. 24.
    Vyazovkin S (1997) J Therm Anal 49:1493–1499CrossRefGoogle Scholar
  25. 25.
    Vyazovkin S (1996) Int J Chem Kinet 28:95–101CrossRefGoogle Scholar
  26. 26.
    Vyazovkin S, Sbirrazzuoli N (1996) Macromolecules 29:1867–1873CrossRefGoogle Scholar
  27. 27.
    Fernandez d’Arlas B, Rueda L, Stefani PM, de la Caba K, Mondragon I, Eceiza A (2007) Thermochim Acta 459:94–103CrossRefGoogle Scholar
  28. 28.
    Papadimitriou SA, Papageorgiou GZ, Bikiaris DN (2008) Eur Polym J 44:2356–2366CrossRefGoogle Scholar
  29. 29.
    Laidler KJ (1984) J Chem Educ 61:494CrossRefGoogle Scholar
  30. 30.
    Flynn JH (1997) Thermochim Acta 300:83–92CrossRefGoogle Scholar
  31. 31.
    Friedman HL (1964) J PolymSci Part C: Polym Sym 6:183–195CrossRefGoogle Scholar
  32. 32.
    Akahira T, Sunose T, Report R (1971) CHIBA Inst Technol 16:22Google Scholar
  33. 33.
    Ozawa T (1965) Bull Chem Soc Jpn 38:1881CrossRefGoogle Scholar
  34. 34.
    Flynn JH, Wall LA (1966) Polym Lett 4:191CrossRefGoogle Scholar
  35. 35.
    Doyle CD (1962) J Appl Polym Sci 6:639–642CrossRefGoogle Scholar
  36. 36.
    Flynn JH (1983) J Therm Anal 27:95CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Wijitra Meelua
    • 1
    • 2
  • Robert Molloy
    • 1
    • 3
  • Puttinan Meepowpan
    • 1
    • 2
  • Winita Punyodom
    • 1
    • 2
  1. 1.Biomedical Polymers Technology Unit, Department of Chemistry, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  2. 2.Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  3. 3.Materials Science Research Center, Faculty of ScienceChiang Mai UniversityChiang MaiThailand

Personalised recommendations