Journal of Polymer Research

, 19:9794 | Cite as

Transport behavior of aromatic hydrocarbons through high density polyethylene/ ethylene propylene diene terpolymer blends

  • P. V. Anil Kumar
  • S. Anilkumar
  • K. T. Varughese
  • Sabu Thomas
Original Paper


Membrane based separation technology is currently regarded as a new frontier of chemical engineering and widely used for the purification, concentration and fractionation of fluid mixtures. Polymer blend membranes are promising materials that can overcome the difficulties associated with homopolymer systems and hence the selection of polymer blend membrane as a novel material for various applications is worth probing. Transport properties of aromatic hydrocarbons through a new class of membranes from blends of high density polyethylene (HDPE) and ethylene propylene diene terpolymer rubber (EPDM) have been investigated at different temperatures to understand the effect of physical and chemical nature of the polymer blend on the transport phenomena. The effects of blend ratio, temperature and penetrant size on the sorption properties were studied. The equilibrium solvent uptake decreases with an increase in concentration of HDPE, in the blends. Relationship between transport behavior and the morphology of the system was examined. The mechanism of transport has been analyzed and found that the mode of transport is close to Fickian. The sorption data have been used to estimate the transport coefficients and various kinetic parameters of sorption.


Diffusion Transport Crosslinking Blends Morphology 


  1. 1.
    Minnathu MA, Unnikrishnan G, Purushothaman E (2011) J Membr Sci 379:363Google Scholar
  2. 2.
    John B, Thomas SP, Varughese KT, Oommen Z, Thomas S (2011) J Polym Res 18:1101CrossRefGoogle Scholar
  3. 3.
    Bhattacharya M, Biswas S, Bhowmick AK (2011) Polymer 52:1562CrossRefGoogle Scholar
  4. 4.
    Chen GQ, Scholes CA, Qiao GG, Kentish SE (2011) J Membr Sci 379:479CrossRefGoogle Scholar
  5. 5.
    Kim W, Park HB (2011) J Membr Sci 372:116CrossRefGoogle Scholar
  6. 6.
    Manoj KC, Prajitha K, Rajesh C, Unnikrishnan G (2010) J Polym Res 17:1CrossRefGoogle Scholar
  7. 7.
    Lue SJ, Ou JS, Chen SL, Hung WS, Hu CC, Jean YC, Lai JY (2010) J Membr Sci 356:78CrossRefGoogle Scholar
  8. 8.
    Lue SJ, Tsai CL, Lee D-T, Mahesh KPO, Hua MY, Hu C-C, Jean YC, Lee K-R, Lai JY (2010) J Membr Sci 349:321CrossRefGoogle Scholar
  9. 9.
    Katoch S, Sharma V, Kundu PP (2010) Chem. Engg Sci 65:4378–4387CrossRefGoogle Scholar
  10. 10.
    Buquet CL, Doudou BB, Chappey C, Dargent E, Marais S (2009) J Phys Chem B 113:3445CrossRefGoogle Scholar
  11. 11.
    Friess K, Jansen JC, Vopicka O, Randova A, Hynek V, Sipek M, Bartovska L, Izak P, Dingemans M, Dewulf J, Langenhove HV, Drioli E (2009) J Membr Sci 338:161CrossRefGoogle Scholar
  12. 12.
    Obasi HC, Ogbobe OO, Igwe IO (2009) J Polym Sci 1:1Google Scholar
  13. 13.
    Ciu L, Yeh J-T, Wang K, Tsai FC, Fu Q (2009) J Membr Sci 327:226–233CrossRefGoogle Scholar
  14. 14.
    Muralidharan MN, Anilkumar S, Thomas S (2008) J Membr Sci 315:147–154CrossRefGoogle Scholar
  15. 15.
    Kumari P, Radhakrishnan CK, George S, Unnikrishnan G (2008) J Polym Res 15:97CrossRefGoogle Scholar
  16. 16.
    Anilkumar PV, Varughese KT, Thomas S (2002) Polym Polym Comp 10:7Google Scholar
  17. 17.
    Aminabhavi TM, Phayde HTS (1995) Polymer 36:1023CrossRefGoogle Scholar
  18. 18.
    Legge NR, Holden G, Schroeder HE (1987) in ‘Thermoplastic Elastomers, A Comprehensive Review’, (Eds.), Hanser Publishers, New York, P 138Google Scholar
  19. 19.
    Lin W, Cossar M, Dang V, Teh J (2007) Polym Testing 26:814CrossRefGoogle Scholar
  20. 20.
    Saville B, Watson AA (1967) Rubb Chem Technol 40:100CrossRefGoogle Scholar
  21. 21.
    Mathew NM, Bhowmick AK, De SK (1982) Rubb Chem Technol 55:51CrossRefGoogle Scholar
  22. 22.
    Mathai AE, Singh RP, Thomas S (2003) PolymEng Sci 43:704CrossRefGoogle Scholar
  23. 23.
    Hopfenberg HB, Paul DR (1976) In: Paul DR (ed) Polymer Blends, vol. I. Academic Press, New YorkGoogle Scholar
  24. 24.
    Shivaputhrappa B, Harogappad, Aminabhavi TM (1991) Macromolecules 24:2598CrossRefGoogle Scholar
  25. 25.
    George SC, Thomas S, Ninan KN (1996) Polymer 37(26)Google Scholar
  26. 26.
    Robeson LM, Noshay A, Matzner M, Merriam CN (1973) Die Angew Makromol Chem 29(30):47CrossRefGoogle Scholar
  27. 27.
    Morrel SH , in Rubber Technology and Manufacture (1982), Blow CM, Hepburn C (Eds.), 2nd edition, Butterworths, London, Ch. 5.Google Scholar
  28. 28.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, IthacaGoogle Scholar
  29. 29.
    Liao DC, Chern YC, HanL JL, Hseih KH (1997) J Polym Sci B: Polym Phys 35:1747CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • P. V. Anil Kumar
    • 1
  • S. Anilkumar
    • 2
  • K. T. Varughese
    • 3
  • Sabu Thomas
    • 4
    • 5
    • 6
  1. 1.School of Chemical SciencesMahatma Gandhi UniversityKeralaIndia
  2. 2.Department of ChemistryNSS CollegeKeralaIndia
  3. 3.Central Power Research InstituteBangaloreIndia
  4. 4.Centre for Nanoscience and NanotechnologyMahatma Gandhi UniversityKeralaIndia
  5. 5.Universiti Teknologi MARAFaculty of Applied SciencesSelongorMalaysia
  6. 6.Center of Excellence for Polymer Materials and TechnologiesLjubljanaSlovenia

Personalised recommendations