Advertisement

Journal of Polymer Research

, 19:9771 | Cite as

A comparative study on the efficiencies of polyethylene compatibilizers by using theoretical methods

  • Erol Yildirim
  • Mine Yurtsever
Original Paper

Abstract

Functionalization of polyethylene chains by grafting of polar groups onto backbones is the most versatile way for preparing polyethylene based compatibilizers (PECs). In this work, a series of theoretical studies were performed to analyze the structure, adhesion and mixing behaviors of PECs. The effect of grafting different polar groups such as acrylic acid (AA), glycidyl methacrylate (GMA), maleic anhydride (MAH) and itaconic acid (IA) on the structure and cohesive properties of polyethylene chains were studied by Molecular Dynamics simulations. The mixing behavior of grafted polyethylenes with some commodity polymers such as polyetylene teraphthalate (PET), polyamide 6 (Nylon6), polyvinyl acetate (PVA) and polylactide (PLA) as well as with starch (ST) and starch acetate (STac) were investigated quantitatively by determining accurate interaction parameters using the modified Flory-Huggins Theory. We showed that the polar groups are the most reactive sites and they bind the chemically incompatible polymers by enabling the stronger interactions at the interfacial region.

Keywords

Polyethylene composites Mixing Interaction parameter Compatibilizer 

Notes

Acknowledgments

The financial support of TUBITAK (Project No: 105 M049), the computer time provided by ITU National High Performance Computing Center and TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure) are greatly acknowledged.

References

  1. 1.
    Chung TC (2002) Prog Polym Sci 27:40–85CrossRefGoogle Scholar
  2. 2.
    Novak I, Florian S (2004) Macromol Mater Eng 289:269–274CrossRefGoogle Scholar
  3. 3.
    Valenza A, Geuskens G, Spadaro G (1997) Eur Polym J 33:957CrossRefGoogle Scholar
  4. 4.
    Chiu HT, Hsiao YK (2006) J Polym Res 13:153–160CrossRefGoogle Scholar
  5. 5.
    Hosier IL, Vaughan AS, Swingler SG (2010) J Mater Sci 45:2747–2759CrossRefGoogle Scholar
  6. 6.
    Kim YF, Choi CN, Kim YD, Lee KY, Lee MS (2004) Fiber Polym 5:270–274CrossRefGoogle Scholar
  7. 7.
    Ermolovich OA, Makarevich AV (2006) Russ J Appl Chem 79:1526–1531CrossRefGoogle Scholar
  8. 8.
    Teramoto N, Motoyama T, Yosomiya R, Shibata M (2003) Eur Polym J 39:255–261CrossRefGoogle Scholar
  9. 9.
    Lai SM, Chen WC, Wang ZW (2011) J Polym Res 18:1033–1042CrossRefGoogle Scholar
  10. 10.
    Pracella M, Pazzagli F, Galeski A (2002) Polym Bull 48:167–174CrossRefGoogle Scholar
  11. 11.
    Wang Y, Yeh F-C, Lai S-M, Chan H-C, Shen H-F (2003) Polym Eng Sci 43:933–945CrossRefGoogle Scholar
  12. 12.
    Sinthavathavorn W, Nithitanakul M, Grady BP, Magaraphan R (2008) Polym Bull 61:331–340CrossRefGoogle Scholar
  13. 13.
    Gaylord NG (1992) In: Reactive extrusion: principles and practice. Hanser, New York, pp 55–71Google Scholar
  14. 14.
    Pesneau I, Champagne MF, Huneault MA (2004) J Appl Polym Sci 91:3180–3191CrossRefGoogle Scholar
  15. 15.
    Bruna J, Yazdani-Pedram M, Quijada R, Valentin JL, Lopez-Manchado MA (2005) React Funct Polym 64:169–178CrossRefGoogle Scholar
  16. 16.
    Shujun W, Jiugao Y, Jinglin Y (2006) J Polym Environ 14:65–70CrossRefGoogle Scholar
  17. 17.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, IthacaGoogle Scholar
  18. 18.
    Accelrys Material Studio Release 5.0 (2009) Accelrys software Inc., San DiegoGoogle Scholar
  19. 19.
    Sun H (1998) J Phys Chem B 102:7338–7364CrossRefGoogle Scholar
  20. 20.
    Gaussian 09 Revision A1 (2009) Frisch MJ, Trucks G, Schlegel HB, Scuseria GE, Robb M A, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin K N, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ Gaussian Inc, Wallingford CT Google Scholar
  21. 21.
    Fan CF, Olafson BD, Blanco M, Hsu SL (1992) Macromolecules 25:3667–3676CrossRefGoogle Scholar
  22. 22.
    Utracki LA (2002) Polymer blends handbook. Kluwer, DordrechtGoogle Scholar
  23. 23.
    Dubey KA, Bhardwaj YK, Chaudhari CV, Sarma KSS, Goel NK, Sabharwal S (2011) J Polym Res 18:95–103CrossRefGoogle Scholar
  24. 24.
    Richardson Le (2004) Industrial plastics: theory and application (4th ed). Cengage LearningGoogle Scholar
  25. 25.
    Karst D, Yang Y (2005) J Appl Polym Sci 96:416–422CrossRefGoogle Scholar
  26. 26.
    Hildebrand JH (1979) Proc Natl Acad Sci USA 76(12):6040–6041CrossRefGoogle Scholar
  27. 27.
    Kelar K, Jurkowski B (2000) Polymer 41:1055–1062CrossRefGoogle Scholar
  28. 28.
    Pedroso AG, Rosa DS (2005) Polym Adv Technol 16:310–317CrossRefGoogle Scholar
  29. 29.
    Ali Dadfar SM, Alemzadeh I, Reza Dadfar SM, Vosoughi M (2011) Mater Design 32:1806–1813CrossRefGoogle Scholar
  30. 30.
    JunSun Y-, Hu G-H, Lambla M, Kotlar HK (1996) 37:4119–4127Google Scholar
  31. 31.
    Pinheiro LA, Bittencourt CS, Canevarolo SV (2010) Polym Eng Sci 50:826–834CrossRefGoogle Scholar
  32. 32.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  33. 33.
    Xanthos M, Young M-W, Karayanndis GP, Bikiaris DN (2001) Polym Eng Sci 4:643–655CrossRefGoogle Scholar
  34. 34.
    Filippi S, Chiono V, Polacco G, Paci M, Minkova LI, Magagnini P (2002) Macromol Chem Phys 203:1512–1525CrossRefGoogle Scholar
  35. 35.
    Chuai C, Iqbal M, Tian S (2010) J Polymer Sci, Part B: Polymer Phys 48:267–275CrossRefGoogle Scholar
  36. 36.
    Agrawal P, Rodrigues AWB, Araujo EM, Melo TJA (2010) J Mater Sci 45:496–502CrossRefGoogle Scholar
  37. 37.
    Minkovaa L, Yordanova Hr, Filippib S, Grizzutic N (2003) Polymer 44:7925–7932CrossRefGoogle Scholar
  38. 38.
    Moly KA, Oommen Z, Bhagawan SS, Groeninckx G, Thomas S (2002) J Appl Polym Sci 86:3210–3225CrossRefGoogle Scholar
  39. 39.
    Singh G, Bhunia H, Rajor A, Jana RN, Choudhary V (2010) J Appl Polym Sci 118:496–502CrossRefGoogle Scholar
  40. 40.
    Singh G, Bhunia H, Rajor A, Choudhary V (2011) Polym Bull 66:939–953CrossRefGoogle Scholar
  41. 41.
    Fu X, Chen X, Wen R, He X, Shang X, Liao Z, Yang L (2007) J Polym Res 14:297–304CrossRefGoogle Scholar
  42. 42.
    Liu W, Wang Y-J, Sun Z (2003) J Appl Polym Sci 88:2904–2911CrossRefGoogle Scholar
  43. 43.
    Jang BC, Huh SY, Jang JG, Bae YC (2001) J Appl Polym Sci 82:3313–3320CrossRefGoogle Scholar
  44. 44.
    Thakore IM, Iyer S, Desai A, Lele A, Devi S (1999) J Appl Polym Sci 74:2791–2802CrossRefGoogle Scholar
  45. 45.
    Huang L-P, Zhou X-P, Cui W, Xie X-L, Tong S-Y (2008) J Mater Sci 43:4290–4296CrossRefGoogle Scholar
  46. 46.
    Huang L-P, Zhou X-P, Cui W, Xie X-L, Tong S-Y (2009) Polym Eng Sci 49:673–679CrossRefGoogle Scholar
  47. 47.
    Yang L, Zhang F, Endo T, Hirotsu T. (2003) Macromolecules 36:4709–4718Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of ChemistryIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations