Journal of Polymer Research

, 19:9739 | Cite as

p-benzoquinone diimines and thiophene based alternating copolymers: organometallic catalyzed syntheses and elementary characterization

  • Juanjuan Li
  • Wei Shi
  • Jianping Zhang
  • Ismayil Nurulla
Original Paper


A series of alternating polymers, which were prepared by coupling of N, N’-dichloro-benzoquinonediimine (a) or 2, 5-dimethyl-N, N’-dichloro-benzoquinonediimine (b) with Grignard reagents of thiophene, were successfully prepared using Ni(II) complexes as catalyst with moderate yields (54–88%) and molecular weights (4.3–7.0 × 103). The basic properties of the obtained copolymers were characterized by FT-IR, 1H NMR, UV-vis absorption, cyclic voltammetry, thermal analysis and Gel permeation chromatography (GPC). The maximum UV–vis absorption of these polymers appears in the range of 410–430 nm and 437–494 nm in DMF and CF3COOH, respectively. XRD patterns of these polymers suggest the low crystallinty. After doped by iodine, conductivity of obtained polymers was improved five-eight orders of magnitude relative to their corresponding neutral precursors (the conductivity of them was <10−13 S/cm). The electrochemical activity of iodine-doped polymers was greatly improved as compared to un-doped ones. The reduction of pristine benzoquinone polymers was also studied in order to tune their properties conveniently.


Alternating copolymer p-Phenylenediamine Thiophene Ni(II) catalyst Grignard reagent Iodine doping 



The authors gratefully acknowledge support from National Natural Science Foundation of China (No. 20974092).


  1. 1.
    Chen SA, Lee HT (1995) Macromolecules 28:2858–2866CrossRefGoogle Scholar
  2. 2.
    Yang CH, Chih YK, Cheng HE, Chen CH (2005) Polymer 46:10688–10698CrossRefGoogle Scholar
  3. 3.
    Yang CM, Chen CY (2005) Synth Met 153:133–136CrossRefGoogle Scholar
  4. 4.
    Chao DM, Lu XF, Chen JY, Zhao XG, Wang LF, Zhang WJ, Wei Y (2006) J Polym Sci A Polym Chem 44:477–482CrossRefGoogle Scholar
  5. 5.
    Guo QX, Yi CQ, Zhu L, Yang Q, Xie Y (2005) Polymer 46:3185–3189CrossRefGoogle Scholar
  6. 6.
    Lv RG, Zhang SL, Shi QF, Kan JQ (2005) Synth Met 150:115–122CrossRefGoogle Scholar
  7. 7.
    MacDiarmid AG, Epstein AJ (1989) Faraday Discuss Chem Soc 88:317–332CrossRefGoogle Scholar
  8. 8.
    Diaz AF, Logan JA (1980) J Electroanal Chem 111:111–114CrossRefGoogle Scholar
  9. 9.
    Yamamoto T, Nurulla I (1999) Jpn J Appl Phys 38:892–894CrossRefGoogle Scholar
  10. 10.
    Yamamoto T, Nurulla I, Ushiro A (2001) Tetrahedron Lett 42:8653–8656CrossRefGoogle Scholar
  11. 11.
    Nalwa HS (1997) Handbook of organic conductive molecules and polymers. Wiley, ChichesterGoogle Scholar
  12. 12.
    McCullough RD (1998) Adv Mater 10:93–116CrossRefGoogle Scholar
  13. 13.
    Yamamoto T, Sanechika K, Yamamoto A (1980) J Polym Sci Polym Lett Ed 18:9–12CrossRefGoogle Scholar
  14. 14.
    Tanaka K, Wang S, Yamabe T (1989) Synth Met 30:57–65CrossRefGoogle Scholar
  15. 15.
    Bakkhshi AK (1995) Solid State Commun 94:943–946CrossRefGoogle Scholar
  16. 16.
    Vogel S, Holze R (2005) Electrochim Acta 50:1587–1595CrossRefGoogle Scholar
  17. 17.
    Can M, Pekmez K, Pekmez N, Yildiz A (1999) Synth Met 104:9–17CrossRefGoogle Scholar
  18. 18.
    Udum YA, Pekmez K, Yıldız A (2005) Eur Polym J 41:1136–1142CrossRefGoogle Scholar
  19. 19.
    Wang HS, Su MS, Wei KH (2010) J Polym Sci A Polym Chem 48:3331–3339CrossRefGoogle Scholar
  20. 20.
    Zeng XR, Ko TM (1997) J Polym Sci B Polym Phys 35:1993–2001CrossRefGoogle Scholar
  21. 21.
    Stejskal J, Trchova M, Blinova NV, Konyushenko EN, Reynaud S, Prokes J (2008) Polymer 49:180–185CrossRefGoogle Scholar
  22. 22.
    Moon DK, Osakada K, Maruyama T, Kubota K, Yamamoto T (1993) Macromolecules 26:6992–6997CrossRefGoogle Scholar
  23. 23.
    Alakhras F, Holze R (2007) Synth Met 157:109–119CrossRefGoogle Scholar
  24. 24.
    Yagci Y, Yilmaz F, Kiralp S, Toppare L (2005) Macromol Chem Phys 206:1178–1182CrossRefGoogle Scholar
  25. 25.
    Ding Y, Boone HW, Anderson JD, Padias AB, Hall HK Jr (2001) Macromolecules 34:5457–5462CrossRefGoogle Scholar
  26. 26.
    Ng SC, Lu HF, Chan HSO, Fuji A, Laga T, Yoshino K (2001) Macromolecules 34:6895–6903CrossRefGoogle Scholar
  27. 27.
    Kang ET, Neon KG, Tan KL (1998) Prog Polym Sci 23:277–324CrossRefGoogle Scholar
  28. 28.
    Fang Q, Yamamoto T (2003) Polymer 44:2947–2956CrossRefGoogle Scholar
  29. 29.
    McCullough RD, Nagle ST, Williams SP, Lowe RD, Jayaraman M (1993) J Am Chem Soc 115:4910–4911CrossRefGoogle Scholar
  30. 30.
    Mamtimin X, Matsidik R, Nurulla I (2010) Polymer 51:437–446CrossRefGoogle Scholar
  31. 31.
    Li WW, Tang HY, Chen XF, Fan XH, Shen ZH, Zhou QF (2008) Polymer 49:4080–4086CrossRefGoogle Scholar
  32. 32.
    Michinobu T, Okoshi K, Osako H, Kumazawa H, Shigehara K (2008) Polymer 49:192–199CrossRefGoogle Scholar
  33. 33.
    Watanabe J, Harkness BR, Sone M, Ichimura H (1994) Macromolecules 27:507–512CrossRefGoogle Scholar
  34. 34.
    Li H, Powell DR, Hayashi RK, West R (1998) Macromolecules 31:52–58CrossRefGoogle Scholar
  35. 35.
    Swan PR (1962) J Polym Sci 56:403–407CrossRefGoogle Scholar
  36. 36.
    Chiang JC, MacDiarmid AG (1986) Synth Met 13:193–205CrossRefGoogle Scholar
  37. 37.
    Quillard S, Louarn G, Buisson JP, Boyer M, Lapkowski M, Pron A et al (1997) Synth Met 84:805–806CrossRefGoogle Scholar
  38. 38.
    Chaudhari HK, Kelkar DS (1996) J Appl Polym Sci 62:15–18CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Juanjuan Li
    • 1
  • Wei Shi
    • 1
  • Jianping Zhang
    • 1
  • Ismayil Nurulla
    • 1
  1. 1.Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, School of Chemistry and Chemical EngineeringXinjiang UniversityUrumqiPeople’s Republic of China

Personalised recommendations