Journal of Polymer Research

, Volume 18, Issue 6, pp 2151–2159 | Cite as

Characterization of Nanocomposites of Poly(butylene adipate-co-terephthalate) blending with Organoclay

  • Jung-Hung Chen
  • Chin-Chi Chen
  • Ming-Chien Yang
Original Paper


Nanocomposites of poly(butylene adipate-co-terephthalate) (PBAT) with montmorillonite (MMT) nanoparticles were prepared via solution blending. Natural MMT was modified by octadecylamine (ODA). Intercalation of the organoclay in the PBAT matrix was studied by X-ray diffraction (XRD). The results from scanning electron microscope (SEM) showed that the surface morphology of nanocomposite of PBAT/ODA-modified MMT was smoother than that of PBAT/neat MMT. From the results of transmission electron microscope (TEM), the dispersion of ODA-modified MMT in the PBAT matrix was finer than that of neat MMT. The addition of organoclay can increase the cooling crystallization temperature of PBAT, as observed by differential scanning calorimetry (DSC). Furthermore, the addition of ODA-modified MMT can improve the thermal stability of PBAT nanocomposites, according to the results of thermogravimetric analyzer (TGA). The tensile strength was little affected, while the Young’s modulus was increased with the clay content. The photo degradation and the hydrolysis of PBAT were reduced by the addition of MMT and ODA-modified MMT. Although the hydrophilicity was increased, the transmission of water vapor was reduced greatly by the addition of ODA-modified MMT.


Poly(butylene adipate-co-terephthalate) Montmorillonite Nanocomposite Thermal properties Mechanical properties Degradation 


  1. 1.
    Petrović ZS, Javni I, Waddon A, Bánhegyi G (2007) J Appl Polym Sci 76:133–151Google Scholar
  2. 2.
    Liu X, Wu Q, Berglund LA, Fan J, Qi Z (2001) Polymer 42:8235–8239CrossRefGoogle Scholar
  3. 3.
    Rong J, Jing Z, Li H, Sheng M (2001) Macromol Rapid Commun 22:329–334CrossRefGoogle Scholar
  4. 4.
    Kim BH, Jung JH, Kim JW, Choi HJ, Joo J (2001) Synth Met 121:1311–1312CrossRefGoogle Scholar
  5. 5.
    Vaia RA, Vasudevan S, Krawiec W, Scanlon LG, Giannelis EP (1995) Adv Mater 7:154–156CrossRefGoogle Scholar
  6. 6.
    Kim BH, Jung JH, Kim JW, Choi HJ, Joo J (2001) Synth Met 117:115–118CrossRefGoogle Scholar
  7. 7.
    Kim BH, Jung JH, Hong SH, Joo J, Epstein AJ, Mizoguchi K, Kim JW, Choi HJ (2002) Macromolecules 35:1419–1423CrossRefGoogle Scholar
  8. 8.
    Yeh JM, Liou SJ, Lai CY, Wu PC, Tsai TY (2001) Chem Mater 13:1131–1136CrossRefGoogle Scholar
  9. 9.
    Lee D, Lee SH, Char K, Kim J (2000) Macromol Rapid Commun 21:1136–1139CrossRefGoogle Scholar
  10. 10.
    Gläsel HJ, Bauer F, Ernst H, Findeisen M, Hartmann E, Langguth H, Mehnert R, Schubert R (2000) Macromol Chem Phys 201:2765–2770CrossRefGoogle Scholar
  11. 11.
    Huang JC, Zhu ZK, Yin J, Qian XF, Sun YY (2001) Polymer 42:873–877CrossRefGoogle Scholar
  12. 12.
    Strawhecker KE, Manias E (2000) Chem Mater 12:2943–2949CrossRefGoogle Scholar
  13. 13.
    Calcagno CIW, Mariani CM, Teixeira SR, Mauler RS (2007) Polymer 48:966–974CrossRefGoogle Scholar
  14. 14.
    Chen BQ, Sun K, Ren T (2005) Eur Polym J 41:453–457CrossRefGoogle Scholar
  15. 15.
    Matzinos P, Tserki V, Kontoyiannis A, Panayiotou C (2002) Polym Degrad Stab 77:17–24CrossRefGoogle Scholar
  16. 16.
    Liu L, Li Y, Liu H, Fang Y (2004) Eur Polym J 40:2739–2744CrossRefGoogle Scholar
  17. 17.
    Yang F, Qiu Z (2011) J Appl Polym Sci 119:1426–1434CrossRefGoogle Scholar
  18. 18.
    Someya Y, Kondo N, Shibata M (2007) J Appl Polym Sci 106:730–736CrossRefGoogle Scholar
  19. 19.
    Someya Y, Sugahara Y, Shibata M (2005) J Appl Polym Sci 95:386–392CrossRefGoogle Scholar
  20. 20.
    Witt U, Müller R, Deckwer W (1995) J Environ Polym Degrad 3:215–223CrossRefGoogle Scholar
  21. 21.
    Witt U, Müller R, Deckwer W (1997) J Environ Polym Degrad 5:81–89CrossRefGoogle Scholar
  22. 22.
    Witt U, Einig T, Yamamoto M, Kleeberg I, Deckwer W, Mülle R (2001) Chemosphere 44:289–299CrossRefGoogle Scholar
  23. 23.
    Kijchavengkul T, Auras R, Rubino M, Ngouajio M, Fernandez R (2008) Chemosphere 71:1607–1616CrossRefGoogle Scholar
  24. 24.
    Chivrac F, Kadlecova Z, Pollet E, Avérous L (2006) J Polym Environ 14:393–401CrossRefGoogle Scholar
  25. 25.
    Diagne M, Guèye M, Vidal L, Tidjani A (2005) Polym Degrad Stab 89:418–426CrossRefGoogle Scholar
  26. 26.
    Woo RSC, Chen Y, Zhu H, Li J, Kim JK, Leung CKY (2007) Compos Sci Technol 67:3448–3456CrossRefGoogle Scholar
  27. 27.
    Park HM, Lee WK, Park CY, Cho WJ, Ha CS (2003) J Mater Sci 38:909–915CrossRefGoogle Scholar
  28. 28.
    Jiang W, Chen SH, Chen Y (2006) J Appl Polym Sci 102:5336–5343CrossRefGoogle Scholar
  29. 29.
    Ou CF, Ho MT, Lin JR (2004) J Appl Polym Sci 91:140–145CrossRefGoogle Scholar
  30. 30.
    Shangguan YY, Wang YW, Wu Q, Chen GQ (2006) Biomaterials 27:2349–2357CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jung-Hung Chen
    • 1
  • Chin-Chi Chen
    • 2
  • Ming-Chien Yang
    • 2
  1. 1.Graduate Institute of EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan
  2. 2.Department of Materials Science and EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan

Personalised recommendations