Journal of Polymer Research

, Volume 18, Issue 6, pp 2093–2102 | Cite as

Synthesis of biodegradable material poly(lactic acid-co-glycerol) via direct melt polycondensation and its reaction mechanism

  • Shi-He Luo
  • Zhao-Yang Wang
  • Chao-Xu Mao
  • Jing-Pei Huo
Original Paper


To further verify the forming mechanism of multi-core structure during the direct melt copolycondensation of lactic acid (LA) with the compounds containing multifunctional groups, the biodegradable material poly(lactic acid-co-glycerol) [P(LA-co-GL)] was synthesized as designed using L-lactic acid (L-LA) and glycerol (GL) as the starting materials. For the molar feed ratio n(LA)/n(GL) of 60/1, the optimal synthetic conditions were discussed. Using 0.3 wt% stannous oxide (SnO) as the catalyst, after the prepolymerization was carried out at 140 °C for 8 h, the melt copolymerization for 8 h at 160 °C gave the polymer with the biggest intrinsic viscosity ([η]) 0.76 dL•g−1. The copolymers P(LA-co-GL)s at different molar feed ratios were characterized by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H-NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Increasing the molar feed ratio n(LA)/n(GL), the weight-average molecular weight (Mw) didn’t increase all the time, but a peak of Mw was formed, which indeed validated the above special phenomenon during the direct melt copolycondensation of LA with the monomers containing multifunctional groups. However, the forming mechanism of multi-core copolymer was different when multihydroxyl alcohol (e.g. GL) was used as the monomer containing multifunctional groups. Because the multi-core structure was linked by the ether bonds with less reversibility in the reaction, the biggest Mw of copolymers was relatively lower. For GL with three terminal hydroxyls as the core, only when n(LA)/n(GL) was more than 100/1, the star-shaped polylactic acid (SPLA) containing one core could be obtained.


Biodegradable material Copolymerization Drug delivery systems Melt polycondensation Polylactic acid Reaction mechanism Synthesis 



We are grateful to the financial support by Guangdong Provincial Natural Science Foundation of China (No. 5300082) and National Natural Science Foundation of China (No. 20772035).


  1. 1.
    Rasal RM, Janorkar AV, Hirt DE (2010) Prog Polym Sci 35:338CrossRefGoogle Scholar
  2. 2.
    Maharana T, Mohanty B, Negi YS (2009) Prog Polym Sci 34:99CrossRefGoogle Scholar
  3. 3.
    Konishi S, Yokoi T, Ochiai B, Endo T (2010) Polym Bull 64:435CrossRefGoogle Scholar
  4. 4.
    Sedlarik V, Kucharczyk P, Kasparkova V, Drbohlav J, Salakova A, Saha P (2010) J Appl Polym Sci 116:1597Google Scholar
  5. 5.
    Gao QW, Lan P, Shao HL, Hu XC (2002) Polym J 34:786CrossRefGoogle Scholar
  6. 6.
    Qian ZY, Li S, Zhang HL, Liu XB (2003) Colloid Polym Sci 281:869CrossRefGoogle Scholar
  7. 7.
    Zhou SB, Deng XM, Li XH (2004) J Appl Polym Sci 91:1848CrossRefGoogle Scholar
  8. 8.
    Moon SI, Deguchi K, Miyamoto M, Kimura Y (2004) Polym Int 53:254CrossRefGoogle Scholar
  9. 9.
    Slivniak R, Langer R, Domb AJ (2005) Macromol 38:5634CrossRefGoogle Scholar
  10. 10.
    Lee CM, Kim HS, Yoon JS (2005) J Appl Polym Sci 95:1116CrossRefGoogle Scholar
  11. 11.
    Matsudo K, Mihara T, Koide N (2005) Polym Prep Jpn 54:1266Google Scholar
  12. 12.
    Abe H, Tetsuka H, Doi Y (2005) Polym Prep Jpn 54:5243Google Scholar
  13. 13.
    Deng LD, Li AG, Yao CM, Sun DX, Dong AJ (2005) J Appl Polym Sci 98:2116CrossRefGoogle Scholar
  14. 14.
    Gong QX, Wang LQ, Tu KH (2006) Carbohydr Polym 64:501CrossRefGoogle Scholar
  15. 15.
    Wang ZY, Zhao YM, Wang F, Wang J (2006) J Appl Polym Sci 99:244CrossRefGoogle Scholar
  16. 16.
    Kim HS, Hwang MO, Kim MN, Yoon JS (2006) J Appl Polym Sci 100:466CrossRefGoogle Scholar
  17. 17.
    Du J, Fang YY, Zheng YB (2007) Polymer 48:5541CrossRefGoogle Scholar
  18. 18.
    Duan JF, Du J, Zheng YB (2007) J Appl Polym Sci 103:2654CrossRefGoogle Scholar
  19. 19.
    Duan JF, Du J, Zheng YB (2007) J Appl Polym Sci 103:3585CrossRefGoogle Scholar
  20. 20.
    Sokolsky-Papkov M, Domb AJ (2008) Polym Adv Technol 19:671CrossRefGoogle Scholar
  21. 21.
    Cohen-Arazi N, Katzhendler J, Kolitz M, Domb AJ (2008) Macromol 41:7259CrossRefGoogle Scholar
  22. 22.
    Tsuji H, Matsuoka H, Itsuno S (2008) J Appl Polym Sci 110:3954CrossRefGoogle Scholar
  23. 23.
    Sun ZJ, Wu L, Lu XL, Meng ZX, Zheng YF, Dong DL (2008) Appl Surf Sci 255:350CrossRefGoogle Scholar
  24. 24.
    Sun ZJ, Wu L, Huang W, Zhang XL, Lu XL, Zheng YF, Yang BF, Dong DL (2009) Mat Sci Eng C 29:178CrossRefGoogle Scholar
  25. 25.
    Li WD, Zeng JB, Li YD, Wang XL, Wang YZ (2009) J Polym Sci Part A Polym Chem 47:5898CrossRefGoogle Scholar
  26. 26.
    Zhai YL, Deng LD, Xing JF, Liu Y, Zhang Q, Dong AJ (2009) J Biomat Sci Polym Ed 20:923CrossRefGoogle Scholar
  27. 27.
    Zhang Y, Wang XL, Wang YZ, Qu MH (2009) J Macromol Sci Part A Pure Appl Chem 46:631CrossRefGoogle Scholar
  28. 28.
    Ding J, Chen SC, Wang XL, Wang YZ (2009) Ind Eng Chem Res 48:788CrossRefGoogle Scholar
  29. 29.
    Inkinen S, Stolt M, Södergård A (2010) Biomacromol 11:1196CrossRefGoogle Scholar
  30. 30.
    Akesson D, Skrifvars M, Seppala J, Turunen M, Martinelli A, Matic A (2010) J Appl Polym Sci 115:480CrossRefGoogle Scholar
  31. 31.
    Namkajorn M, Petchsuk A, Opaprakasit M, Opaprakasit P (2010) Express Polym Lett 4:415CrossRefGoogle Scholar
  32. 32.
    Michinobu T, Bito M, Tanimura M, Katayama Y, Masai E, Nakamura M, Otsuka Y, Ohara S, Shigehara K (2010) J Macromol Sci Part A Pure Appl Chem 47:564CrossRefGoogle Scholar
  33. 33.
    Miao PK, Wu DM, Zhao CE, Xu GL, Zeng K, Wang YP, Fu Q, Yang G (2010) E-polym No. 006Google Scholar
  34. 34.
    Ye RR, Wang ZY, Yang K, Luo SH (2010) Des Monomers Polym 13:415Google Scholar
  35. 35.
    Wang ZY, Zhao HJ, Wang QF, Ye RR, David EF (2010) J Appl Polym Sci 117:1405Google Scholar
  36. 36.
    Wang ZY, Luo YF, Ye RR, Song XM (2011) J Polym Res (doi:  10.1007/s10965-010-9442-0)
  37. 37.
    Xu YP, Li JH, Chen MQ, Ren JJ, Ni ZB, Liu XY (2010) Acta Polym Sin: 300Google Scholar
  38. 38.
    Arvanitoyannis L, Nakayama A, Kawasaki N, Yamamoto N (1995) Polymer 36:2947CrossRefGoogle Scholar
  39. 39.
    Han DK, Hubbell JA (1996) Macromol 29:5233CrossRefGoogle Scholar
  40. 40.
    Han DK, Hubbell JA (1997) Macromol 30:6077CrossRefGoogle Scholar
  41. 41.
    Han DK, Park KD, Hubbell JA, Kim YH (1998) J Biomater Sci Polym Ed 9:667CrossRefGoogle Scholar
  42. 42.
    Ju YM, Ahn KD, Kim JM, Hubbell JA, Han DK (2003) Polym Bull 50:107CrossRefGoogle Scholar
  43. 43.
    Lee SH, Kim SH, Han YK, Kim YH (2001) J Polym Sci Part A Polym Chem 39:973CrossRefGoogle Scholar
  44. 44.
    Tsuji H, Miyase T, Tezuka Y, Saha SK (2005) Biomacromol 6:244CrossRefGoogle Scholar
  45. 45.
    Grijpma DW, Melchels FPW, Hou Q, Feijen J (2006) Mater Res Innovat 10:321Google Scholar
  46. 46.
    Zhang WA, Zheng SX (2007) Polym Bull 58:767CrossRefGoogle Scholar
  47. 47.
    Gou PF, Zhu WP, Shen ZQ (2008) J Polym Sci Part A Polym Chem 46:2108CrossRefGoogle Scholar
  48. 48.
    Zhao YM, Wang ZY, Yang F (2005) J Appl Polym Sci 97:195CrossRefGoogle Scholar
  49. 49.
    Moon SI, Lee CW, Miyamoto M, Kimura Y (2000) J Polym Sci Part A Polym Chem 38:1673CrossRefGoogle Scholar
  50. 50.
    Moon SI, Lee CW, Taniguchi I, Miyamoto M, Kimura Y (2001) Polymer 42:5059CrossRefGoogle Scholar
  51. 51.
    Moon SI, Kimura Y (2003) Polym Int 52:299CrossRefGoogle Scholar
  52. 52.
    Sayed FN, Grover V, Dubey KA, Sudarsan V, Tyagi AK (2011) J Colloid Interf Sci 353:445CrossRefGoogle Scholar
  53. 53.
    Ma YD, Huang LQ, Song CX, Zeng XW, Liu G, Mei L (2010) Polymer 51:5952CrossRefGoogle Scholar
  54. 54.
    Park SY, Han BR, Na KM, Han DK, Kim SC (2003) Macromol 36:4115CrossRefGoogle Scholar
  55. 55.
    Ray WC, Grinstaff MW (2003) Macromol 36:3557CrossRefGoogle Scholar
  56. 56.
    Yang F, Song FL, Pan YF, Wang ZY, Yang YQ, Zhao YM, Liang SZ, Zhang YM (2010) J Microencapsul 27:133CrossRefGoogle Scholar
  57. 57.
    Wang N, Wu XS, Lujan-Upton H, Donahue E, Siddiqui A (1997) J Biomater Sci Polym Ed 8:905CrossRefGoogle Scholar
  58. 58.
    Wang N, Wu XS (1998) J Biomater Sci Polym Ed 9:75CrossRefGoogle Scholar
  59. 59.
    Kim ES, Kim BC, Kim SH (2004) J Polym Sci Part B Polym Phys 42:939CrossRefGoogle Scholar
  60. 60.
    Ye RR, Wang ZY, Yang K, Li JX (2009) Chem 72:637Google Scholar
  61. 61.
    Luo YF, Wang ZY, Song XM, Mao ZZ, Zhao HJ (2008) Chin J Synth Chem 16:166Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Shi-He Luo
    • 1
  • Zhao-Yang Wang
    • 1
  • Chao-Xu Mao
    • 1
  • Jing-Pei Huo
    • 1
  1. 1.School of Chemistry and EnvironmentSouth China Normal UniversityGuangzhouPeople’s Republic of China

Personalised recommendations