Journal of Polymer Research

, Volume 18, Issue 6, pp 1693–1703 | Cite as

Synthesis and characterization of aromatic polyamides derived from various derivatives of 4,4’-oxydianiline

  • Jyh-Chien Chen
  • Kuppachari Rajendran
  • Sheng-Wen Huang
  • Hui-Wen Chang
Original Paper


Three aromatic diamines, 2,2′-diiodo-4,4′-oxydianiline (DI-ODA 2), 2,2′-bis[p-(trifluoromethyl)phenyl]-4,4′-oxydianiline (BTFP-ODA 3) and 2,8-diaminodibenzofuran (DADBF 5) were synthesized by using 4,4-oxydianiline (4,4′-ODA) as the starting material. New aromatic polyamides 6, 7 and 8 were prepared from these three diamines and six commercially available aromatic diacids by direct polycondensation, respectively. Polyamides 6 and 7 contained bulky iodide and p-trifluoromethylphenyl substitutents that would hinder the chain packing and increase the free volume. They exhibited good optical transparency in visible light region and showed excellent solubility in organic solvents such as DMSO, DMAc, DMF and NMP. Polyamides 8 containing planar dibenzofuran moieties had the highest glass transition temperatures and decomposition temperatures among these polyamides. Polyamides 6 had the lowest decomposition temperatures due to the presence of weak carbon–iodine bond. All of these polyamides showed amorphous nature evidenced by wide angle X-ray diffraction. No endothermic peaks were observed from DSC thermograms up to their decomposition temperatures. High optical transparency and excellent solubility combined with good thermal stability make these polyamides attractive for potential soft electronics applications.


Polyamides Polycondensation Solubility Synthesis 


  1. 1.
    Cassidy PE (1980) Thermally stable polymers. Marcel Dekker, New YorkGoogle Scholar
  2. 2.
    Lin J, Sherrington DC (1994) Adv Polym Sci 111:177–219CrossRefGoogle Scholar
  3. 3.
    Yang HH (1989) Aromatic high-strength fibers. Wiley, New YorkGoogle Scholar
  4. 4.
    Mittal KL (1984) Polyimides: synthesis, characterization and applications, vols 1 and 2. Springer, New YorkGoogle Scholar
  5. 5.
    Imai Y (1995) High Perform Polym 7:337–345CrossRefGoogle Scholar
  6. 6.
    Imai Y (1996) React Funct Polym 30:3–15CrossRefGoogle Scholar
  7. 7.
    Mallakpour S, Kowsari E (2005) Polym Adv Technol 16:732–737CrossRefGoogle Scholar
  8. 8.
    Liaw DJ, Liaw BY (2001) Polymer 42:839–845CrossRefGoogle Scholar
  9. 9.
    Nakata SJ, Brisson J (1997) J Polym Sci A Polym Chem 35:2379–2386CrossRefGoogle Scholar
  10. 10.
    Pal RR, Patil PS, Salunkhe MM, Maldar NN, Wadgaonkar PP (2009) Eur Polym J 45:953–959CrossRefGoogle Scholar
  11. 11.
    Liaw DJ, Hsu PN, Chen JJ, Liaw BY, Hwang CY (2001) J Polym Sci A Polym Chem 39:1557–1563CrossRefGoogle Scholar
  12. 12.
    Liaw DJ, Liaw BY, Yang CM (2001) Macromol Chem Phys 202:1866–1872CrossRefGoogle Scholar
  13. 13.
    Hsiao SH, Chang YH (2004) Eur Polym J 40:1749–1757CrossRefGoogle Scholar
  14. 14.
    Ayala V, Maya EM, Garcia JM, de la Campa JC, Lozano AE, de Abajo J (2005) J Polym Sci A Polym Chem 43:112–121CrossRefGoogle Scholar
  15. 15.
    Hsiao SH, Yang CP, Chen CW, Liou GS (2005) Eur Polym J 41:511–517CrossRefGoogle Scholar
  16. 16.
    Sava I, Bruma M (2006) Macromol Symp 239:36–42CrossRefGoogle Scholar
  17. 17.
    Yamazaki N, Higashi F, Kawabata J (1974) J Polym Sci Polym Chem Ed 12:2149–2154CrossRefGoogle Scholar
  18. 18.
    Yamazaki N, Matsumoto M, Higashi F (1975) J Polym Sci Polym Chem Ed 13:1373–1380CrossRefGoogle Scholar
  19. 19.
    Chen JC, Rajendran K, Chang YH, Huang SW, Chern YT (2010) J Appl Polym Sci (accepted)Google Scholar
  20. 20.
    Matsumoto T, Nishimura K, Kurosaki T (1999) Eur Polym J 35:1529–1535CrossRefGoogle Scholar
  21. 21.
    Ueda M, Aizawa T, Imai Y (1977) J Polym Sci Polym Chem Ed 15:2739–2747CrossRefGoogle Scholar
  22. 22.
    Yang CP, Hsiao SH, Lin YS (1994) J Appl Polym Sci 51:2063–2072CrossRefGoogle Scholar
  23. 23.
    Hsiao SH, Yang CP (1990) J Polym Sci A Polym Chem 28:2501–2508CrossRefGoogle Scholar
  24. 24.
    Butta E, De Petris S, Frosini V, Pasquini M (1971) Eur Polym J 7:387–397CrossRefGoogle Scholar
  25. 25.
    In I, Kim SY (2006) Polymer 47:547–552CrossRefGoogle Scholar
  26. 26.
    Li F, Fang S, Ge JJ, Honigfort PS, Chen JC, Harris FW, Cheng SZD (1999) Polymer 40:4571–4583CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jyh-Chien Chen
    • 1
  • Kuppachari Rajendran
    • 1
  • Sheng-Wen Huang
    • 1
  • Hui-Wen Chang
    • 1
  1. 1.Department of Polymer EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan

Personalised recommendations