Journal of Polymer Research

, Volume 18, Issue 6, pp 1527–1537 | Cite as

Nonisothermal crystallization kinetics of novel biodegradable poly(butylene succinate-co-2-methyl-1,3-propylene succinate)s

  • Jin-Shan Lu
  • Ming Chen
  • Shih-Fu Lu
  • Chi-He Chen
Original Paper


Two novel poly(butylene succinate-co-2-methyl-1,3-propylene succinate)s, PBMPSu 95/5 and PBMPSu 90/10, were characterized as having 6.5 and 10.8 mol% 2-methyl-1,3-propylene succinate (MS) units, respectively, by 1H NMR. A differential scanning calorimeter (DSC) and a polarized light microscope (PLM) employed to investigate the nonisothermal crystallization of these copolyesters and poly(butylene succinate) (PBSu). Morphology and the isothermal growth rates of spherulites under PLM experiments at three cooling rates of 1, 2.5 and 5 °C/min were monitored and obtained by curve-fitting. These continuous rate data were analyzed with the Lauritzen-Hoffman equation. A transition of regime II→III was found at 96.2, 83.5, and 77.9 °C for PBSu, PBMPSu 95/05, and PBMPSu 90/10, respectively. DSC exothermic curves at five cooling rates of 1, 2.5, 5, 10 and 20 °C/min show that almost all of the nonisothermal crystallization occurred in regime III. DSC data were analyzed using modified Avrami, Ozawa, Mo, Friedman and Vyazovkin equations. All the results of PLM and DSC measurements reveal that incorporation of minor MS units into PBSu markedly inhibits the crystallization of the resulting polymer.


Crystallization Differential scanning calorimetry (DSC) Morphology Polyesters 



The authors thank the National Science Council of the Republic of China, Taiwan, for financially supporting this research under Contract No. NSC 98-2221-E-110-007.

Supplementary material

10965_2010_9558_Fig14_ESM.gif (40 kb)
Fig. S1

Hoffman−Weeks plot for determining the equilibrium melting temperature of PBMPSu 90/10 from DSC data at a heating rate of 10 °C/min. (GIF 40 kb)

10965_2010_9558_MOESM1_ESM.tif (39 kb)
High Resolution. (TIFF 39 kb)


  1. 1.
    Mochizuki M, Hirami M (1997) Polym Adv Technol 8:203–209CrossRefGoogle Scholar
  2. 2.
    Ishioka R, Kitakuni E, Ichikawa Y (2002) Biopolymers, vol 4. Wiley-VCH, pp 275–297Google Scholar
  3. 3.
    Kumagai Y, Kanesawa Y, Doi Y (1992) Macromol Chem Phys 193:53–57CrossRefGoogle Scholar
  4. 4.
    Chatani Y, Hasegawa R, Tadokoro H (1971) Polym Prepr Jpn 20:420Google Scholar
  5. 5.
    Ichikawa Y, Suzuki J, Washiyama J, Moteki Y, Noguchi K, Okuyama K (1995) Polymer J 27:1230–1238CrossRefGoogle Scholar
  6. 6.
    Ihn KJ, Yoo ES, Im SS (1995) Macromolecules 28:2460–2464CrossRefGoogle Scholar
  7. 7.
    Miyata T, Masuko T (1998) Polymer 39:1399–1401CrossRefGoogle Scholar
  8. 8.
    Yoo ES, Im SS (1999) J Polym Sci Part B: Polym Phys 37:1357–1366CrossRefGoogle Scholar
  9. 9.
    Gan ZH, Abe H, Kurokawa H, Doi Y (2001) Biomacromolecules 2:605–613CrossRefGoogle Scholar
  10. 10.
    Cao A, Okamura T, Nakayama K (2002) Polym Degrad Stab 78:107–117CrossRefGoogle Scholar
  11. 11.
    Yasuniwa M, Satou T (2002) J Polym Sci Part B: Polym Phys 40:2411–2420CrossRefGoogle Scholar
  12. 12.
    Qiu ZB, Komura M, Ikehara T, Nishi T (2003) Polymer 44:7781–7785CrossRefGoogle Scholar
  13. 13.
    Yasuniwa M, Tsubakihara S, Satou T, Iura K (2005) J Polym Sci Part B: Polym Phys 43:2039–2047CrossRefGoogle Scholar
  14. 14.
    Papageorgiou GZ, Bikiaris DN (2005) Polymer 46:12081–12092CrossRefGoogle Scholar
  15. 15.
    Wang XH, Zhou JJ, Li L (2007) Eur Polym J 43:3163–3170CrossRefGoogle Scholar
  16. 16.
    Zhu CY, Zhang ZG, Liu QP, Wang ZP, Jin J (2003) J Appl Polym Sci 90:982–990CrossRefGoogle Scholar
  17. 17.
    Tserki V, Matzinos P, Pavlidou E, Vachliotis D, Panayiotou C (2006) Polym Degrad Stab 91:367–376CrossRefGoogle Scholar
  18. 18.
    Ranucci E, Liu Y, Lindblad MS, Albertsson AC (2000) Macromol Rapid Commun 21:680–684CrossRefGoogle Scholar
  19. 19.
    Liu Y, Ranucci E, Lindblad MS, Albertsson AC (2001) J Polym Sci Part A: Polym Chem 39:2508–2519CrossRefGoogle Scholar
  20. 20.
    Chrissafis K, Paraskevopoulos KM, Bikiaris DN (2006) Polym Degrad Stab 91:60–68CrossRefGoogle Scholar
  21. 21.
    Xu YX, Xu J, Guo BH, Xie XM (2007) J Polym Sci Part B: Polym Phys 45:420–428CrossRefGoogle Scholar
  22. 22.
    Xu YX, Wu J, Liu DH, Guo BH, Xie XM (2008) J Appl Polym Sci 109:1881–1889CrossRefGoogle Scholar
  23. 23.
    Papageorgiou GZ, Bikiaris DN (2007) Biomacromolecules 8:2437–2449CrossRefGoogle Scholar
  24. 24.
    Chen CH, Peng JS, Chen M, Lu HY, Tsai CJ, Yang CS (2010) Colloid Polym Sci 288:731–738CrossRefGoogle Scholar
  25. 25.
    Lu SF, Chen M, Shih YC, Chen CH (2010) J Polym Sci Part B: Polym Phys 48:1299–1308CrossRefGoogle Scholar
  26. 26.
    Sullivan CJ, Dehm DC, Reich EE, Dillon ME (1990) J Coat Technol 62:37–45Google Scholar
  27. 27.
    Bello P, Bello A, Riande E (1999) Macromolecules 32:8197–8203CrossRefGoogle Scholar
  28. 28.
    Nalampang K, Johnson AF (2003) Polymer 44:6103–6109CrossRefGoogle Scholar
  29. 29.
    Suh J, Spruiell JE, Schwartz SA (2003) J Appl Polym Sci 88:2598–2606CrossRefGoogle Scholar
  30. 30.
    Lewis CL, Spruiell JE (2006) J Appl Polym Sci 100:2592–2603CrossRefGoogle Scholar
  31. 31.
    Chen CH, Yang CS, Chen M, Shih YC, Hsu HS, Lu SF (2010) eXPRESS Polym Lett. doi: 10.3144/expresspolymlett.2011.29
  32. 32.
    Hoffman JD, Davis GT, Lauritzen JI Jr (1976) Treatise on solid state chemistry, Vol 3, Chapter 7. Plenum, New YorkGoogle Scholar
  33. 33.
    Chen M, Chung CT (1998) Polym Compos 19:689–697CrossRefGoogle Scholar
  34. 34.
    Avrami M (1940) J Chem Phys 8:212–224CrossRefGoogle Scholar
  35. 35.
    Avrami M (1941) J Chem Phys 9:177–184CrossRefGoogle Scholar
  36. 36.
    Jeziorny A (1978) Polymer 19:1142–1144CrossRefGoogle Scholar
  37. 37.
    Ozawa T (1971) Polymer 12:150–158CrossRefGoogle Scholar
  38. 38.
    Liu TX, Mo ZS, Wang SG, Zhang HF (1997) Polym Eng Sci 37:568–575CrossRefGoogle Scholar
  39. 39.
    Friedman HL (1964) J Polym Sci Part C 6:183–195Google Scholar
  40. 40.
    Vyazovkin S (2001) J Comput Chem 22:178–183CrossRefGoogle Scholar
  41. 41.
    Vyazovkin S, Sbirrazzuoli N (2004) Macromol Rapid Commun 25:733–738CrossRefGoogle Scholar
  42. 42.
    Chung CT, Chen M (1992) Polym Prepr 33:420–421Google Scholar
  43. 43.
    Chen M, Chung CT (1998) J Polym Sci Part B: Polym Phys 36:2393–2399CrossRefGoogle Scholar
  44. 44.
    Di Lorenzo ML, Cimmino S, Silvestre C (2000) Macromolecules 33:3828–3832CrossRefGoogle Scholar
  45. 45.
    Tsai CJ, Chen M, Lu HY, Chang WC, Chen CH (2010) J Polym Sci Part B: Polym Phys 48:932–939CrossRefGoogle Scholar
  46. 46.
    Keller A (1955) J Polym Sci 17:351–364CrossRefGoogle Scholar
  47. 47.
    Sperling LH (2006) Introduction to physical polymer science, 4th ed, chapter 6. Wiley-Interscience, New YorkGoogle Scholar
  48. 48.
    Qiu ZB, Fujinami S, Komura M, Nakajima K, Ikehara T, Nishi T (2004) Polym J 36:642–646CrossRefGoogle Scholar
  49. 49.
    Kissinger HE (1957) Anal Chem 29:1702–1706CrossRefGoogle Scholar
  50. 50.
    Papageorgiou GZ, Achilias DS, Bikiaris DN (2007) Macromol Chem Phys 208:1250–1264CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jin-Shan Lu
    • 1
  • Ming Chen
    • 1
  • Shih-Fu Lu
    • 1
  • Chi-He Chen
    • 1
  1. 1.Department of Materials and Optoelectronic ScienceNational Sun Yat-Sen UniversityTaiwanRepublic of China

Personalised recommendations