Journal of Polymer Research

, Volume 18, Issue 6, pp 1451–1457 | Cite as

Degradation of the dielectric and piezoelectric response of β-poly(vinylidene fluoride) after temperature annealing

  • M. P. Silva
  • C. M. Costa
  • V. Sencadas
  • A. J. Paleo
  • S. Lanceros-Méndez
Original Paper


The effect of annealing temperature and time on the dielectric and piezoelectric response of poly(vinylidene fluoride), PVDF, was studied. The observed decrease in the value of the dielectric, ε′, and piezoelectric, d 33, constants is related to depoling of the material and not to variations of the degree of crystallinity or the electroactive β-phase content. In a general way, the dielectric and piezoelectric responses decrease strongly in the first 4 h at a given temperature, in particular for temperatures higher that 80 °C, reaching stable values for longer annealing times. For most applications, the temperature of 100 °C will set the limit of suitable performance. Nevertheless, the material still retains a stable piezoelectric response of ca. 4 pC/N after reaching temperatures of 140 °C. The mechanisms behind the observed behavior are discussed.


PVDF Electroactive polymers Ferroelectric Piezoelectric 


77.65.Bn 77.80.Dj 77.84.Jd 61.41.+e 



The authors thank the Portuguese Foundation for Science and Technology (FCT) for financial support under grants PTDC/CTM/73030/2006 and NANO/NMed-SD/0156/2007. V.S. thanks the FCT for the SFRH/BPD/63148/2009 grant.


  1. 1.
    Bar-Cohen Y, Zhang Q (2008) Electroactive polymer actuators and sensors. MRS Bull 33:5Google Scholar
  2. 2.
    Vinogradov A et al (2006) State-of-the-art developments in the field of electroactive polymers. Mater Res Soc Symp Proc 889:6Google Scholar
  3. 3.
    Cheng Z, Zhang Q (2008) Field-activated electroactive polymers. MRS Bull 33:183–187Google Scholar
  4. 4.
    Shankar R, Ghosh TK, Spontak RJ (2007) Dielectric elastomers as next-generation polymeric actuators. Soft Matter 3:14CrossRefGoogle Scholar
  5. 5.
    O'Halloran A, O'Malley F, McHugh P (2008) A review on dielectric elastomer actuators, technology, applications and challenges. J Appl Phys 104(071101):10Google Scholar
  6. 6.
    Schwartz M (2002) Encyclopedia of smart materials. Wiley, New YorkCrossRefGoogle Scholar
  7. 7.
    Nalwa HS (1995) Ferroelectric polymers: chemistry, physics and applications. Marcel Dekker, New YorkGoogle Scholar
  8. 8.
    Gregorio R Jr, Ueno EM (1999) Effect of crystalline phase, orientation and temperature on the dielectric properties of poly (vinylidene fluoride) (PVDF). J Mater Sci 34(18):4489–4500CrossRefGoogle Scholar
  9. 9.
    Sencadas V, Lanceros-Mendez S, Gregorio Filho R, Pouzada AS (2006) α - To - β transformation on PVDF films obtained by uniaxial stretch. Mater Sci Forum 514–516:872Google Scholar
  10. 10.
    Gomes J, Serrado Nunes J, Sencadas V, Lanceros-Mendez S (2010) Influence of the b-phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride). Smart Mater Struc 19(6):065010CrossRefGoogle Scholar
  11. 11.
    Sencadas V, Gregorio R Jr, Lanceros-Méndez S (2009) α to β phase transformation and microestructural changes of PVDF films induced by uniaxial stretch. J Macromol Sci B Phys 48(3):514–525CrossRefGoogle Scholar
  12. 12.
    Sencadas V, Gregorio Filho R, Lanceros-Mendez S (2006) Processing and characterization of a novel nonporous β-phase. J Non-Cryst Solids 352(21-22):2226–2229CrossRefGoogle Scholar
  13. 13.
    Costa CM et al (2008) Microscopic origin of the high-strain mechanical response of poled and non-poled poly(vinylidene fluoride) in the β-phase. J Non-Cryst Solids 354(32):3871–3876CrossRefGoogle Scholar
  14. 14.
    Celina MC et al (2005) Piezoelectric PVDF materials performance and operation limits in space environments. Mater Res Soc Symp Proc 851:12Google Scholar
  15. 15.
    Botelho G et al (2008) Relationship between processing conditions, defects and thermal degradation of poly(vinylidene fluoride) in the β-phase. J Non-Cryst Solids 354(1):72–78CrossRefGoogle Scholar
  16. 16.
    Botelho G et al (2008) Performance of electroactive poly(vinylidene fluoride) against UV radiation. Polym Test 27(7):818–822CrossRefGoogle Scholar
  17. 17.
    Carbeck JD, Rutledge GC (1996) Temperature dependent elastic, piezoelectric and pyroelectric properties of β-poly(vinylidene fluoride) from molecular simulation. Polymer 37(22):5089–5097CrossRefGoogle Scholar
  18. 18.
    Carbeck JD, Lacks DJ, Rutledge GC (1995) A model of crystal polarization in β-poly(vinylidene fluoride). J Chem Phys 103(23):10347–10355CrossRefGoogle Scholar
  19. 19.
    Tashiro K et al (1980) Calculation of elastic and piezoelectric constants of polymer crystals by a point charge model: application to poly(vinylidene fluoride) form I. Macromolecules 13(3):691–698CrossRefGoogle Scholar
  20. 20.
    Lanceros-Méndez S et al (2001) FTIR and DSC studies of mechanically deformed β-PVDF films. J Macromol Sci Phys 40 B(3-4):517–527Google Scholar
  21. 21.
    Salimi A, Yousefi AA (2003) FTIR studies of β-phase crystal formation in stretched PVDF films. Polym Test 22(6):699–704CrossRefGoogle Scholar
  22. 22.
    Inoue M, Tada Y, Suganuma K, Ishiguro H (2009) Variations in polymeric structure of ferroelectric poly(vinylidene fluoride) films during annealing at various temperatures. J Appl Polym Sci 111(6):2837–2843CrossRefGoogle Scholar
  23. 23.
    Kochervinskiı VV (2003) Piezoelectricity in crystallizing ferroelectric polymers: poly(vinylidene fluoride) and its copolymers (a review). Crystallogr Rep 48:649–675CrossRefGoogle Scholar
  24. 24.
    Sencadas V, Lanceros-Mendez S, Mano JF (2004) Characterization of poled and non-poled β-PVDF films using thermal analysis techniques. Thermochim Acta 424(1–2):201–207CrossRefGoogle Scholar
  25. 25.
    Marega C, Marigo A (2003) Influence of annealing and chain defects on the melting behaviour of poly(vinylidene fluoride). Eur Polym J 39(8):1713–1720CrossRefGoogle Scholar
  26. 26.
    Hikosaka M, Rastogi S, Keller A, Kawabata HJ (1992) Investigations on the crystallization of polyethylene under high pressure: role of mobile phases, lamellar thickening growth, phase transformations, and morphology. Macromol Sci B Phys 31(1):87–131CrossRefGoogle Scholar
  27. 27.
    Nakagawa K, Ishida Y (1973) Annealing effects in poly(vinylidene fluoride) as revealed by specific volume measurements, differential scanning calorimetry, and electron microscopy. J Polym Sci Polym Phys Ed 11(11):2153–2171Google Scholar
  28. 28.
    Sencadas V et al (2005) Poling of β-poly(vinylidene fluoride): dielectric and IR spectroscopy studies. E-Polymers Art 002:1–12Google Scholar
  29. 29.
    Sencadas V, Barbosa R, Lanceros-Mendez S, Mano JF (2003) Mechanical characterization and influence of the high temperature shrinkage of b-PVDF films on its electromechanical properties. Ferroelectrics 294:61–71CrossRefGoogle Scholar
  30. 30.
    Blyler LL Jr, Johnson GE, Hylton M (1980) Characterization of biaxially-oriented polyvinylidene fluoride-film for transducer applications. Ferroelectrics 28:303–306CrossRefGoogle Scholar
  31. 31.
    Johnson GE, Blyler LL Jr, Crane GR, Gieniewski C (1981) Thermal piezoelectric stability of poled uniaxially-and biaxially-oriented poly(vinylidene fluoride). Ferroelectrics 32:43–47CrossRefGoogle Scholar
  32. 32.
    Vinson JH, Jungnickel BJ (1998) Structure and stress dependence of pyroelectricity in poly(vinylidene fluoride). Ferroelectrics 216:63–81CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • M. P. Silva
    • 1
  • C. M. Costa
    • 2
  • V. Sencadas
    • 1
  • A. J. Paleo
    • 3
  • S. Lanceros-Méndez
    • 1
  1. 1.Centro/Departamento de Física da Universidade do Minho, Campus de GualtarBragaPortugal
  2. 2.CeNTI - Centre for Nanotechnology and Smart Materials, Rua Fernando MesquitaVila Nova de FamalicãoPortugal
  3. 3.IPC – Institute for Polymers and CompositesUniversity of Minho, Campus de AzurémGuimarãesPortugal

Personalised recommendations