Journal of Polymer Research

, Volume 18, Issue 6, pp 1409–1416 | Cite as

Novel fluorinated polymers bearing phosphonated side chains: synthesis, characterization and properties

Original Paper


A new class of aryl trifluorovinyl ether monomers containing phosphonated oligo(ethylene oxide) units were designed and synthesized. Novel fluorinated polymers containing perfluorocyclobutane and phosphonic acid moieties were prepared from these monomers via the thermal cyclopolymerization and hydrolysis reaction. The structures of these monomers and polymers were characterized by nuclear magnetic resonance spectroscopy and fourier transform spectroscopy. The thermal properties of these polymers were evaluated with differential scanning calorimetry and thermo-gravimetric analysis. The 5% weight loss of these polymers was in range of 258–270 °C in nitrogen, but no glass transition temperatures were detected. The polymers showed good solubility in organic solvents such as dimethyl sulfoxide and N,N-dimethylacetamide. In addition, the basic membrane properties of the membranes such as water uptake and proton conductivity were also measured at room temperature. The membranes exhibited high water uptake (up to 44.7%) due to the high level of phosphonation content. The proton conductivities of the membranes under 100% relative humidity were in the range of 0.032–0.068 S/cm, which entitled them as candidates for proton exchange membranes.


Fluoropolymers Polyelectrolytes Phosphonate Oligo(ethylene oxide) 



The authors greatly appreciated the Doctoral Fund of Ministry of Education of China (No. 200802551014), and the Open Foundation of State Key Laboratory for Modification of Chemical Fibers and Polymer Materials (No. LK0804) for the financial support.


  1. 1.
    Steele BCH, Heinzel A (2001) Nature 414:345–352CrossRefGoogle Scholar
  2. 2.
    Ameduri B, Boutevin B (2004) Well-architectured fluoropolymers: synthesis, properties and applications. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Kim DS, Robertson GP, Guiver MD et al (2006) J Membr Sci 281:111–120CrossRefGoogle Scholar
  4. 4.
    Miyatake K, Oyaizu K, Tsuchida E et al (2001) Macromolecules 34:2065–2071CrossRefGoogle Scholar
  5. 5.
    Xing PX, Robertson GP, Guiver MD et al (2005) Polymer 46:3257–3263CrossRefGoogle Scholar
  6. 6.
    Norsten TB, Guiver MD, Murphy J et al (2006) Adv Funct Mater 16:1814–1822CrossRefGoogle Scholar
  7. 7.
    Ghassemi H, McGrath JE, Zawodzinski TA Jr (2006) Polymer 47:4132–4139CrossRefGoogle Scholar
  8. 8.
    Iacono ST, Ewald D, Sankhe A et al (2007) High Perform Polym 19:581–591CrossRefGoogle Scholar
  9. 9.
    Kim DJ, Chang BJ, Kim JH et al (2008) J Membr Sci 325:217–222CrossRefGoogle Scholar
  10. 10.
    Qian GQ, Smith DW Jr, Benicewicz BC (2009) Polymer 50:3911–3916CrossRefGoogle Scholar
  11. 11.
    Smith DW Jr, Babb DA, Shah H et al (2000) J Fluorine Chem 104:109–117CrossRefGoogle Scholar
  12. 12.
    Zhu YQ, Huang YG, Meng WD et al (2006) Polymer 47:6272–6279CrossRefGoogle Scholar
  13. 13.
    Iacono ST, Budy SM, Jin J et al (2007) J Polym Sci. Polym Chem 45:5705–5721CrossRefGoogle Scholar
  14. 14.
    Harris JM (1972) Poly(ethylene glycol) chemistry: biotechnical and biomedical applications. Plenum, New YorkGoogle Scholar
  15. 15.
    Neugebaue D (2007) Polym Int 56:1469–1498CrossRefGoogle Scholar
  16. 16.
    Schuster M, Rager T, Noda A et al (2005) Fuel Cells 5:355–365CrossRefGoogle Scholar
  17. 17.
    Yeo WS, Min DH, Hsieh RW et al (2005) Angew Chem Int Ed 44:5480–5483CrossRefGoogle Scholar
  18. 18.
    Oda K, Nishizono N, Tamai Y et al (2005) Heterocycles 65:1985–1988CrossRefGoogle Scholar
  19. 19.
    Allcock HR, Hofmann MA, Ambler CM et al (2002) J Membr Sci 201:47–54CrossRefGoogle Scholar
  20. 20.
    Li JQ, Qiao JX, Smith D et al (2007) Tetrahedron Lett 48:7516–7519CrossRefGoogle Scholar
  21. 21.
    Ligon SC, Krawiec M, Kitaygorodskiy A et al (2003) J Fluorine Chem 123:139–146CrossRefGoogle Scholar
  22. 22.
    Babb DA, Ezzell BR, Clement KS et al (1993) J Polym Sci Polym Chem 31:3465–3477CrossRefGoogle Scholar
  23. 23.
    Huang X, Wang R, Zhao P et al (2005) Polymer 46:7590–7597CrossRefGoogle Scholar
  24. 24.
    Jiang DD, Yao Q, McKinney MA et al (1999) Polym Degrad Stab 63:423–434CrossRefGoogle Scholar
  25. 25.
    Lafitte B, Jannasch P (2007) Adv Fuel Cells 1:119–185CrossRefGoogle Scholar
  26. 26.
    Kennedy AP, Babb DA, Bremmer JN et al (1995) J Polym Sci Polym Chem 33:1859–1865CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiChina
  2. 2.College of Physical Science and TechnologyGuangxi UniversityNanningChina

Personalised recommendations