Journal of Polymer Research

, Volume 18, Issue 5, pp 859–867 | Cite as

Fracture properties of natural rubber filled with hybrid carbon black/nanoclay

  • Yuanbo Liu
  • Li Li
  • Qi Wang
  • Xin Zhang
Original Paper


Hybrid carbon black (CB) and nanoclay (NC) in a rubber matrix have provided superior mechanical performances over conventional composites. Yet the fracture and fatigue properties have not been fully explored. In this paper, the mechanical properties of the hybrid-filled natural rubber (NR) were investigated with regard to the tensile strength, fatigue crack growth (FCG) and cut resistance. The ruptured crack tip and the torn surface were studied by using optical microscopy and scanning electron microscopy (SEM), respectively. It was found that the fatigue resistance at large tearing energy and cut strength were enhanced with hybrid filler. Subsidiary cracks were observed at the ruptured tip in rubber with NC. Morphology analysis revealed that the hybrid filler led to a rougher torn surface than rubber with non-hybrid filler. It was proposed that the clay layers constructed a dual phase filler network with CB aggregates. The filler network could cause strength anisotropy in the matrix and introduce more energy dissipation mechanisms to the system, resulting in enhanced fatigue resistance.


Hybrid filler Fatigue crack growth Crack resistance Natural rubber Nanoclay 



The financial support from the National Basic Research Program of China (No. 2007CB714700) is greatly appreciated. The authors acknowledge the support of the Maryland NanoCenter and its NispLab. The NispLab is supported in part by the NSF as a MRSEC Shared Experimental Facility.


  1. 1.
    Mars WV, Fatemi A (2002) Int J Fatigue 24:949–961CrossRefGoogle Scholar
  2. 2.
    Wu YP, Zhao W, Zhang LQ (2006) Macromol Mater Eng 291:944–949CrossRefGoogle Scholar
  3. 3.
    Hamed GR (2000) Rubber Chem Technol 73:524–533CrossRefGoogle Scholar
  4. 4.
    Hamed GR, Al-Sheneper AA (2003) Rubber Chem Technol 76:436CrossRefGoogle Scholar
  5. 5.
    EIIuI MD (2001) Engineering with rubber-how to design rubber components. In: Gent AN (ed), 2nd edn. Hanser, Munich.Google Scholar
  6. 6.
    Mars WV, Fatemi A (2004) Rubber Chem Technol 77:391–412CrossRefGoogle Scholar
  7. 7.
    Kluppel M (2009) Macromol Mater Eng 294:130–140CrossRefGoogle Scholar
  8. 8.
    Reincke K, Grellmann W, Kluppel M (2009) Kautsch Gummi Kunstst 62:246–251Google Scholar
  9. 9.
    Persson BNJ, Albohr O, Heinrich G, Ueba H (2005) J Phys-Condens Mat 17:R1071–R1142CrossRefGoogle Scholar
  10. 10.
    Arroyo M, Lopez-Manchado MA, Herrero B (2003) Polymer 44:2447–2453CrossRefGoogle Scholar
  11. 11.
    Carretero-Gonzalez J, Verdejo R, Toki S, Hsiao BS, Giannelis EP, Lopez-Manchado MA (2008) Macromolecules 41:2295–2298CrossRefGoogle Scholar
  12. 12.
    Al-Yamani F, Goettler LA (2007) Rubber Chem Technol 80:100–114CrossRefGoogle Scholar
  13. 13.
    Bala P, Samantaray BK, Srivastava SK, Nando GB (2004) J Appl Polym Sci 92:3583–3592CrossRefGoogle Scholar
  14. 14.
    Joly S, Garnaud G, Ollitrault R, Bokobza L, Mark JE (2002) Chem Mat 14:4202–4208CrossRefGoogle Scholar
  15. 15.
    Munusamy Y, Ismail H, Mariatti M, Ratnam CT (2008) J Reinf Plast Compos 27:1925–1945CrossRefGoogle Scholar
  16. 16.
    Jia QX, Wu YP, Xiang P, Ye X, Wang YQ, Zhang LQ (2005) Polym Polym Compos 13:709–719Google Scholar
  17. 17.
    Praveen S, Chattopadhyay PK, Albert P, Dalvi VG, Chakraborty BC, Chattopadhyay S (2009) Compos Pt A-Appl Sci Manuf 40:309–316CrossRefGoogle Scholar
  18. 18.
    Chattopadhyay PK, Basuli U, Chattopadhyay S (2009) Polym Compos. doi: 10.1002/pc.20866 Google Scholar
  19. 19.
    Maiti M, Sadhu S, Bhowmick AK (2005) J Appl Polym Sci 96:443–451CrossRefGoogle Scholar
  20. 20.
    Lorenz H, Fritzsche J, Das A, Stockelhuber KW, Jurk R, Heinrich G, Kluppel M (2009) Compos Sci Technol 69:2135–2143CrossRefGoogle Scholar
  21. 21.
    Jin J, Chen L, Song M, Yao KJ (2006) Macromol Mater Eng 291:1414–1421CrossRefGoogle Scholar
  22. 22.
    Song M, Wong CW, Jin J, Ansarifar A, Zhang ZY, Richardson M (2005) Polym Int 54:560–568CrossRefGoogle Scholar
  23. 23.
    Arroyo M, Lopez-Manchado MA, Valentin JL, Carretero J (2007) Compos Sci Technol 67:1330–1339CrossRefGoogle Scholar
  24. 24.
    Lietz S, Sandler JKW, Bosch E, Altstadt V (2006) Kautsch Gummi Kunstst 59:388–395Google Scholar
  25. 25.
    Mazich KA, Samus MA, Smith CA, Rossi G (1991) Macromolecules 24:2766–2769CrossRefGoogle Scholar
  26. 26.
    Griffith AA (1921) Philos Trans R Soc London. Ser A 221:163–198Google Scholar
  27. 27.
    Rivlin RS, Thomas AG (1953) J Polym Sci 10:291–318CrossRefGoogle Scholar
  28. 28.
    Thomas AG (1962) Rheologica Acta 2:63–66CrossRefGoogle Scholar
  29. 29.
    Greensmith HW, Mullins L, Thomas AG (1960) J Rheol 4:179–189CrossRefGoogle Scholar
  30. 30.
    Lake GJ, Thomas AG (1967) Proc R Soc London. Ser A 300:108–119Google Scholar
  31. 31.
    Qu LL, Huang GS, Liu ZY, Zhang P, Weng GS, Nie YJ (2009) Acta Mater 57:5053–5060CrossRefGoogle Scholar
  32. 32.
    Carretero-Gonzalez J, Retsos H, Verdejo R, Toki S, Hsiao BS, Giannelis EP, Lopez-Manchado MA (2008) Macromolecules 41:6763–6772CrossRefGoogle Scholar
  33. 33.
    Hamed GR, Park BH (1999) Rubber Chem Technol 72:946–959CrossRefGoogle Scholar
  34. 34.
    Busse WF (1934) Ind Eng Chem 26:1194–1199CrossRefGoogle Scholar
  35. 35.
    Hamed GR (2005) Rubber Chem Technol 78:548–553CrossRefGoogle Scholar
  36. 36.
    Gent AN, Razzaghi-Kashani A, Hamed GR (2003) Rubber Chem Technol 76:122–131CrossRefGoogle Scholar
  37. 37.
    Gent AN, Pulford CTR (1984) J Mater Sci 19:3612–3619CrossRefGoogle Scholar
  38. 38.
    Kaang S, Nah C (1998) Polymer 39:2209–2214CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.State Key Laboratory of Polymer Materials Engineering (Sichuan University)Polymer Research Institute of Sichuan UniversityChengduPeople’s Republic of China
  2. 2.Department of Materials Science and EngineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations