Skip to main content
Log in

Fracture properties of natural rubber filled with hybrid carbon black/nanoclay

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Hybrid carbon black (CB) and nanoclay (NC) in a rubber matrix have provided superior mechanical performances over conventional composites. Yet the fracture and fatigue properties have not been fully explored. In this paper, the mechanical properties of the hybrid-filled natural rubber (NR) were investigated with regard to the tensile strength, fatigue crack growth (FCG) and cut resistance. The ruptured crack tip and the torn surface were studied by using optical microscopy and scanning electron microscopy (SEM), respectively. It was found that the fatigue resistance at large tearing energy and cut strength were enhanced with hybrid filler. Subsidiary cracks were observed at the ruptured tip in rubber with NC. Morphology analysis revealed that the hybrid filler led to a rougher torn surface than rubber with non-hybrid filler. It was proposed that the clay layers constructed a dual phase filler network with CB aggregates. The filler network could cause strength anisotropy in the matrix and introduce more energy dissipation mechanisms to the system, resulting in enhanced fatigue resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mars WV, Fatemi A (2002) Int J Fatigue 24:949–961

    Article  CAS  Google Scholar 

  2. Wu YP, Zhao W, Zhang LQ (2006) Macromol Mater Eng 291:944–949

    Article  CAS  Google Scholar 

  3. Hamed GR (2000) Rubber Chem Technol 73:524–533

    Article  CAS  Google Scholar 

  4. Hamed GR, Al-Sheneper AA (2003) Rubber Chem Technol 76:436

    Article  CAS  Google Scholar 

  5. EIIuI MD (2001) Engineering with rubber-how to design rubber components. In: Gent AN (ed), 2nd edn. Hanser, Munich.

  6. Mars WV, Fatemi A (2004) Rubber Chem Technol 77:391–412

    Article  CAS  Google Scholar 

  7. Kluppel M (2009) Macromol Mater Eng 294:130–140

    Article  Google Scholar 

  8. Reincke K, Grellmann W, Kluppel M (2009) Kautsch Gummi Kunstst 62:246–251

    Google Scholar 

  9. Persson BNJ, Albohr O, Heinrich G, Ueba H (2005) J Phys-Condens Mat 17:R1071–R1142

    Article  CAS  Google Scholar 

  10. Arroyo M, Lopez-Manchado MA, Herrero B (2003) Polymer 44:2447–2453

    Article  CAS  Google Scholar 

  11. Carretero-Gonzalez J, Verdejo R, Toki S, Hsiao BS, Giannelis EP, Lopez-Manchado MA (2008) Macromolecules 41:2295–2298

    Article  CAS  Google Scholar 

  12. Al-Yamani F, Goettler LA (2007) Rubber Chem Technol 80:100–114

    Article  CAS  Google Scholar 

  13. Bala P, Samantaray BK, Srivastava SK, Nando GB (2004) J Appl Polym Sci 92:3583–3592

    Article  CAS  Google Scholar 

  14. Joly S, Garnaud G, Ollitrault R, Bokobza L, Mark JE (2002) Chem Mat 14:4202–4208

    Article  CAS  Google Scholar 

  15. Munusamy Y, Ismail H, Mariatti M, Ratnam CT (2008) J Reinf Plast Compos 27:1925–1945

    Article  CAS  Google Scholar 

  16. Jia QX, Wu YP, Xiang P, Ye X, Wang YQ, Zhang LQ (2005) Polym Polym Compos 13:709–719

    CAS  Google Scholar 

  17. Praveen S, Chattopadhyay PK, Albert P, Dalvi VG, Chakraborty BC, Chattopadhyay S (2009) Compos Pt A-Appl Sci Manuf 40:309–316

    Article  Google Scholar 

  18. Chattopadhyay PK, Basuli U, Chattopadhyay S (2009) Polym Compos. doi:10.1002/pc.20866

    Google Scholar 

  19. Maiti M, Sadhu S, Bhowmick AK (2005) J Appl Polym Sci 96:443–451

    Article  CAS  Google Scholar 

  20. Lorenz H, Fritzsche J, Das A, Stockelhuber KW, Jurk R, Heinrich G, Kluppel M (2009) Compos Sci Technol 69:2135–2143

    Article  CAS  Google Scholar 

  21. Jin J, Chen L, Song M, Yao KJ (2006) Macromol Mater Eng 291:1414–1421

    Article  CAS  Google Scholar 

  22. Song M, Wong CW, Jin J, Ansarifar A, Zhang ZY, Richardson M (2005) Polym Int 54:560–568

    Article  CAS  Google Scholar 

  23. Arroyo M, Lopez-Manchado MA, Valentin JL, Carretero J (2007) Compos Sci Technol 67:1330–1339

    Article  CAS  Google Scholar 

  24. Lietz S, Sandler JKW, Bosch E, Altstadt V (2006) Kautsch Gummi Kunstst 59:388–395

    CAS  Google Scholar 

  25. Mazich KA, Samus MA, Smith CA, Rossi G (1991) Macromolecules 24:2766–2769

    Article  CAS  Google Scholar 

  26. Griffith AA (1921) Philos Trans R Soc London. Ser A 221:163–198

    Google Scholar 

  27. Rivlin RS, Thomas AG (1953) J Polym Sci 10:291–318

    Article  CAS  Google Scholar 

  28. Thomas AG (1962) Rheologica Acta 2:63–66

    Article  CAS  Google Scholar 

  29. Greensmith HW, Mullins L, Thomas AG (1960) J Rheol 4:179–189

    Article  CAS  Google Scholar 

  30. Lake GJ, Thomas AG (1967) Proc R Soc London. Ser A 300:108–119

    CAS  Google Scholar 

  31. Qu LL, Huang GS, Liu ZY, Zhang P, Weng GS, Nie YJ (2009) Acta Mater 57:5053–5060

    Article  CAS  Google Scholar 

  32. Carretero-Gonzalez J, Retsos H, Verdejo R, Toki S, Hsiao BS, Giannelis EP, Lopez-Manchado MA (2008) Macromolecules 41:6763–6772

    Article  CAS  Google Scholar 

  33. Hamed GR, Park BH (1999) Rubber Chem Technol 72:946–959

    Article  Google Scholar 

  34. Busse WF (1934) Ind Eng Chem 26:1194–1199

    Article  CAS  Google Scholar 

  35. Hamed GR (2005) Rubber Chem Technol 78:548–553

    Article  CAS  Google Scholar 

  36. Gent AN, Razzaghi-Kashani A, Hamed GR (2003) Rubber Chem Technol 76:122–131

    Article  CAS  Google Scholar 

  37. Gent AN, Pulford CTR (1984) J Mater Sci 19:3612–3619

    Article  CAS  Google Scholar 

  38. Kaang S, Nah C (1998) Polymer 39:2209–2214

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from the National Basic Research Program of China (No. 2007CB714700) is greatly appreciated. The authors acknowledge the support of the Maryland NanoCenter and its NispLab. The NispLab is supported in part by the NSF as a MRSEC Shared Experimental Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Li, L., Wang, Q. et al. Fracture properties of natural rubber filled with hybrid carbon black/nanoclay. J Polym Res 18, 859–867 (2011). https://doi.org/10.1007/s10965-010-9482-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9482-5

Keywords

Navigation