Journal of Polymer Research

, Volume 18, Issue 4, pp 715–720 | Cite as

Miscibility, properties and morphology of biodegradable blends of UHMW-PPC/PVA/EVOH

  • Xi Chen
  • S. J. Wang
  • M. Xiao
  • D. M. Han
  • Yuezhong Meng
Original Paper


Thermally stable and biodegradable blends of ultrahigh molecular weight poly(propylene carbonate) (UHMW-PPC), poly(vinyl alcohol) (PVA) and poly(ethylene-co-vinyl alcohol) (EVOH) were melt compounded in a batch mixer followed by compression molding. The miscibility, mechanical properties, thermal behavior, and morphologies of the blends were investigated by torque rheometer, Fourier transform infrared spectroscopy, tensile strength test, thermogravimetric analysis, differential scanning calorimetry and scanning electron microscopy. The experimental results showed well interfacial miscibility among phases of PVA, EVOH and PPC. The hydrogen bonding interaction between PPC with PVA and/or EVOH can also be confirmed by Fourier transform infrared spectroscopy spectra. The study on the mechanical properties and thermal behavior demonstrated that PVA/EVOH content can enhance the tensile strength, thermal stability and crystallinity of the blends dramatically. Further, scanning electron microscopic observation revealed a three-phase structure with good interfacial adhesion.


Poly(propylene carbonate) Poly(vinyl alcohol) Poly(ethylene-co-vinyl alcohol) Biodegradable blends 



The authors would like to thank the China High-Tech Development 863 Program (Grant No: 2010AA03) and Guangdong Province Sci & Tech Bureau (Key Strategic Project Grant No. 2008A080800024) for financial support of this work.


  1. 1.
    Darensbourg DJ, Holtcamp MW (1996) Coord Chem Rev 153:155–l74CrossRefGoogle Scholar
  2. 2.
    Bugoni L, Krause L, Virginia PM (2001) Mar Pollut Bull 42:1330–1334CrossRefGoogle Scholar
  3. 3.
    Walther D (1987) Coord Chem Rev 195:997–948Google Scholar
  4. 4.
    Kuran W, Listos T (1994) Macromol Chem Phys 7:287–292Google Scholar
  5. 5.
    Meehl GA, Washington WM (1996) Nature 382:56CrossRefGoogle Scholar
  6. 6.
    Eastmond GC (1999) Adv Polym Sci 149:59–223CrossRefGoogle Scholar
  7. 7.
    Qiu ZB, Ikehara T (2003) T Nishi Polymer 44:7519Google Scholar
  8. 8.
    Tsutomu O, Lee SH (2005) J Appl Polym Sci 97:1107–1114CrossRefGoogle Scholar
  9. 9.
    Meng YZ, Du LC, Tjong SC, Zhu Q, Hay AS (2002) J Polym Sci [A1] 40:3579–3591Google Scholar
  10. 10.
    Wang SJ, Tjong SC, Du LC, Zhao XS, Meng YZ (2002) J Appl Polym Sci 85:2327–2334CrossRefGoogle Scholar
  11. 11.
    Zhu Q, Meng YZ et al (2002) Polym Int 51:1079–1085CrossRefGoogle Scholar
  12. 12.
    Lu XL, Ge XC, Meng YZ (2005) Acta Scientiarum Naturalium Universitatis Sunyatseni 44:37–39Google Scholar
  13. 13.
    Ge XC, Xu Y, Meng YZ (2005) Compos Sci Technol 65:2219–2225CrossRefGoogle Scholar
  14. 14.
    Jiao J, Wang SJ, Xiao M, Xu Y, Meng YZ (2007) Polym Eng Sci 47:174–180CrossRefGoogle Scholar
  15. 15.
    Qiao JJ, Du FG, Pang MZ, Wang SJ, Xiao M, Meng YZ (2008) Journal of Wuhan University of Technology-Mater Sci Ed 23:362–366CrossRefGoogle Scholar
  16. 16.
    Pang MZ, Qiao JJ, Jiao J, Wang SJ, Xiao M, Meng YZ (2007) J Appl Polym Sci 107:2854–2960CrossRefGoogle Scholar
  17. 17.
    Finch CA (1992) Polyvinyl alcohol. Wiley, New York, Chapters 1–3 and 12–18Google Scholar
  18. 18.
    Nakano N, Yamane S, Toyosima K (1989) Poval(polyvinyl-alcohol). Japan polymer society, KyoTo, Chapter 3Google Scholar
  19. 19.
    Jang J, Lee DK (2003) Polymer 44:8139–8146CrossRefGoogle Scholar
  20. 20.
    Kit KM, Schultz JM, Gohil RM (1995) Polym Eng Sci 35:923–928CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province / State Key Laboratory of Optoelectronic Materials and TechnologiesSun Yat-Sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations