Journal of Polymer Research

, Volume 18, Issue 4, pp 701–713 | Cite as

Synthesis and characterization of biodegradable thermosensitive neutral and acidic poly(organophosphazene) gels bearing carboxylic acid group

  • Jung-Kyo Cho
  • Sun Mi Lee
  • Chang Won Kim
  • Soo-Chang Song
Original Paper


The needs to develop thermosensitive biodegradable polymers have been raised in the area of injectable polymer therapeutics. The aims of this work are to develop thermosensitive biodegradable poly(organophosphazene) gels having functional group and characterize their physicochemical properties such as thermosensitivity and hydrolytic behaviors. Controlled thermosensitivity and hydrolytic degradability of polymer gels were obtained with randomly grafted amphiphilic poly(organophosphazenes). Hydrophobic L-isoleucine ethyl ester (IleOEt) and hydrophilic poly(ethylene glycol) 550 or 750 Da (PEG 550 or 750) were substituted along with relatively small amount of glycylglycine allyl ester (GlyGlyOALL) which was deprotected into glycylglycine (GlyGlyOH). By this procedure several neutral (GlyGlyOALL) and acidic (GlyGlyOH) poly(organophosphazene) pairs with same substituent ratio were prepared, in which the ratio of substituent groups could systematically modulate their thermosensitive properties. The aqueous solutions and gels of prepared acidic poly(organophosphazene) also showed the thermosensitive sol-gel transition and biodegradation at body temperature, respectively. Acidic poly(organophosphazene) exhibited much faster hydrolytic degradation than neutral polymer in the buffer solutions (pH 7.4) at 37 °C. With systematically regulated thermo-responsiveness and hydrolytic degradability, the synthesized poly(organophosphazenes) are expected to be smart injectable materials having a useful moiety and further chemically conjugated with various bioactive molecules for biomedical applications.


Injectable Functionalization of polymer Biodegradable hydrogel Phase behavior Poly(organophosphazene) Stimuli-sensitive polymer 



This research was financially supported by the Ministry of Education, Science and Technology in Korea. The authors would like to thank Dr. ChangJu Chun for his kind advices and scientific discussion.

Supplementary material

10965_2010_9466_MOESM1_ESM.doc (11.4 mb)
ESM 1 (DOC 11697 kb)


  1. 1.
    Chilkoti A, Dreher MR, Meyer DE, Raucher D (2002) Adv Drug Deliv Rev 54:613–630CrossRefGoogle Scholar
  2. 2.
    Ebara M, Yamato M, Hirose M, Aoyagi T, Kikuchi A, Sakai K, Okano T (2003) Biomacromolecules 4:344–349CrossRefGoogle Scholar
  3. 3.
    Kikuchi A, Okano T (2002) Prog Polym Sci 27:1165–1193CrossRefGoogle Scholar
  4. 4.
    Nandkumar MA, Yamato M, Kushida A, Konno C, Hirose M, Kikuchi A, Okano T (2002) Biomaterials 23:1121–1130CrossRefGoogle Scholar
  5. 5.
    Ohya S, Nakayama Y, Matsuda T (2001) Biomacromolecules 2:856–863CrossRefGoogle Scholar
  6. 6.
    Weidner J (2001) Drug Discov Today 6:1239–1241CrossRefGoogle Scholar
  7. 7.
    Malmsten M, Lindman B (1992) Macromolecules 25:5440–5445CrossRefGoogle Scholar
  8. 8.
    Qiu Y, Park K (2001) Adv Drug Deliv Rev 53:321–339CrossRefGoogle Scholar
  9. 9.
    Rathi RC, Zentner GM and Jeong B (2001) Biodegradable low molecular weight triblock poly(lactide-co- glycolide) polyethylene glycol copolymers having reverse thermal gelation properties US Patent 6201072Google Scholar
  10. 10.
    Schild HG (1992) Pro Polym Sci 17:163–249CrossRefGoogle Scholar
  11. 11.
    Aoyagi TE, Mitsuhiro; Sakai, Kiyotaka; Sakurai, Yasuhisa; Okano, Teruo (2000) J Biomater Sci Polym Ed 11:10Google Scholar
  12. 12.
    Chen G, Hoffman AS (1995) Nature 373:49–52CrossRefGoogle Scholar
  13. 13.
    Ebara M, Aoyagi T, Sakai K, Okano T (2000) Macromolecules 33:8312–8316CrossRefGoogle Scholar
  14. 14.
    Fong RB, Ding Z, Long CJ, Hoffman AS, Stayton PS (1999) Bioconjugate Chem 10:720–725CrossRefGoogle Scholar
  15. 15.
    Katayama Y, Sonoda T, Maeda M (2001) Macromolecules 34:8569–8573CrossRefGoogle Scholar
  16. 16.
    Kim MR (2002) Jeong JH and Tae Gwan Park. Biotechnol Prog 18:495–500CrossRefGoogle Scholar
  17. 17.
    Park K-H, Na K, Jung SY, Kim SW, Park KH, Cha KY, Chung H-M (2005) J Biosci Bioeng 99:598–602CrossRefGoogle Scholar
  18. 18.
    Chen T, Embree HD, Wu L-Q, Gregory F (2002) Payne. Biopolymers 64:292–302CrossRefGoogle Scholar
  19. 19.
    Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A (2000) Biomaterials 21:2155–2161CrossRefGoogle Scholar
  20. 20.
    Kuijpers AJ, Engbers GHM, Feijen J, De Smedt SC, Meyvis TKL, Demeester J, Krijgsveld J, Zaat SAJ, Dankert J (1999) Macromolecules 32:3325–3333CrossRefGoogle Scholar
  21. 21.
    Lee BH, Lee YM, Sohn YS, Song S-C (2002) Macromolecules 35:3876–3879CrossRefGoogle Scholar
  22. 22.
    Lee BH, Song S-C (2004) Macromolecules 37:4533–4537CrossRefGoogle Scholar
  23. 23.
    Lee SB, Song S-C, Jin J-I, Sohn YS (1999) Macromolecules 32:7820–7827CrossRefGoogle Scholar
  24. 24.
    Song S-C, Lee SB, Jin J-I, Sohn YS (1999) Macromolecules 32:2188–2193CrossRefGoogle Scholar
  25. 25.
    Kang GD, Cheon SH, Khang G, Song S-C (2006) Eur J Pharm Biopharm 63:340–346CrossRefGoogle Scholar
  26. 26.
    Kang GD, Cheon SH, Song S-C (2006) Int J Pharm 319:29–36CrossRefGoogle Scholar
  27. 27.
    Allcock HR, Kwon S (1989) Macromolecules 22:75–79CrossRefGoogle Scholar
  28. 28.
    Andrianov AK, Cohen S, Visscher KB, Payne LG, Allcock HR, Langer R (1993) J Control Release 27:69–77CrossRefGoogle Scholar
  29. 29.
    Andrianov AK, Payne LG (1996) Polyphosphazene Hydrogel Microspheres for Protein Delivery. In: Smadar Cohen HB (ed) Microparticulate Systems for the Delivery of Proteins and Vaccines (Drugs and the Pharmaceutical Sciences), 1st edn. Marcel Dekker, New YorkGoogle Scholar
  30. 30.
    Andrianov AK, Payne LG (1998) Adv Drug Deliv Rev 34:155–170CrossRefGoogle Scholar
  31. 31.
    Ahn S, Monge EC, Song S-C (2009) Langmuir 25:2407–2418CrossRefGoogle Scholar
  32. 32.
    Allcock HR (2003) Chemistry and applications of polyphosphazenes. John Wiley & Sons, New JerseyGoogle Scholar
  33. 33.
    Park M-R, Chun C, Ahn S-W, Ki M-H, Cho C-S, Song S-C (2010) Biomaterials 31:1349–1359CrossRefGoogle Scholar
  34. 34.
    Chun C, Lim HJ, Hong K-Y, Park K-H, Song S-C (2009) Biomaterials 30:6295–6308CrossRefGoogle Scholar
  35. 35.
    Chun C, Lee SM, Kim SY, Yang HK, Song S-C (2009) Biomaterials 30:2349–2360CrossRefGoogle Scholar
  36. 36.
    Chun C, Lee SM, Kim CW, Hong K-Y, Kim SY, Yang HK, Song S-C (2009) Biomaterials 30:4752–4762CrossRefGoogle Scholar
  37. 37.
    Sohn YS, Cho YH, Baek H, Jung O-S (1995) Macromolecules 28:7566–7568CrossRefGoogle Scholar
  38. 38.
    Greenstein JP, Winitz M (1961) Chemistry of the Amino Acids. John Wiley & Son, New YorkGoogle Scholar
  39. 39.
    Loccufier J, Crommen J (1991) Vandorpe J and Etienne Schacht. Makromol Chem Rapid Commun 12:159–165CrossRefGoogle Scholar
  40. 40.
    Kunz H, Waldmann H (1985) Helv Chim Acta 68:618–622CrossRefGoogle Scholar
  41. 41.
    Friedrich-Bochnitschek S, Waldmann H, Kunz H (1989) J Org Chem 54:751–756CrossRefGoogle Scholar
  42. 42.
    Kunz H, Waldmann H (1984) Angew Chem Int Ed Eng 23:71–72CrossRefGoogle Scholar
  43. 43.
    Waldmann H, Kunz H (1983) Liebigs Ann Chem 1983:1712–1725CrossRefGoogle Scholar
  44. 44.
    Allcock HR, Pucher SR, Scopelianos AG (1994) Macromolecules 27:1071–1075CrossRefGoogle Scholar
  45. 45.
    Evans DF and Wennerström H (1999) The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet Wiley-VCH, New York.Google Scholar
  46. 46.
    Karlstroem G, Carlsson A, Lindman B (1990) J Phys Chem 94:5005–5015CrossRefGoogle Scholar
  47. 47.
    Harris JM (1992) Introduction to Biotechnical and Biomedical Applications of Poly(Ethylene Glycol). In: Harris JM (ed) Poly(Ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications (Topics in Applied Chemistry), 1st edn. Plenum Press, New YorkGoogle Scholar
  48. 48.
    Allcock HR, Dudley GK (1996) Macromolecules 29:1313–1319CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jung-Kyo Cho
    • 1
    • 2
  • Sun Mi Lee
    • 2
  • Chang Won Kim
    • 2
  • Soo-Chang Song
    • 2
  1. 1.Department of Biomolecular Science, School of ScienceUniversity of Science and Technology (UST)DaejeonSouth Korea
  2. 2.Division of Life/HealthKorea Institute of Science and Technology (KIST)SeoulSouth Korea

Personalised recommendations