Skip to main content
Log in

Synthesis and characterization of biodegradable thermosensitive neutral and acidic poly(organophosphazene) gels bearing carboxylic acid group

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The needs to develop thermosensitive biodegradable polymers have been raised in the area of injectable polymer therapeutics. The aims of this work are to develop thermosensitive biodegradable poly(organophosphazene) gels having functional group and characterize their physicochemical properties such as thermosensitivity and hydrolytic behaviors. Controlled thermosensitivity and hydrolytic degradability of polymer gels were obtained with randomly grafted amphiphilic poly(organophosphazenes). Hydrophobic L-isoleucine ethyl ester (IleOEt) and hydrophilic poly(ethylene glycol) 550 or 750 Da (PEG 550 or 750) were substituted along with relatively small amount of glycylglycine allyl ester (GlyGlyOALL) which was deprotected into glycylglycine (GlyGlyOH). By this procedure several neutral (GlyGlyOALL) and acidic (GlyGlyOH) poly(organophosphazene) pairs with same substituent ratio were prepared, in which the ratio of substituent groups could systematically modulate their thermosensitive properties. The aqueous solutions and gels of prepared acidic poly(organophosphazene) also showed the thermosensitive sol-gel transition and biodegradation at body temperature, respectively. Acidic poly(organophosphazene) exhibited much faster hydrolytic degradation than neutral polymer in the buffer solutions (pH 7.4) at 37 °C. With systematically regulated thermo-responsiveness and hydrolytic degradability, the synthesized poly(organophosphazenes) are expected to be smart injectable materials having a useful moiety and further chemically conjugated with various bioactive molecules for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chilkoti A, Dreher MR, Meyer DE, Raucher D (2002) Adv Drug Deliv Rev 54:613–630

    Article  CAS  Google Scholar 

  2. Ebara M, Yamato M, Hirose M, Aoyagi T, Kikuchi A, Sakai K, Okano T (2003) Biomacromolecules 4:344–349

    Article  CAS  Google Scholar 

  3. Kikuchi A, Okano T (2002) Prog Polym Sci 27:1165–1193

    Article  CAS  Google Scholar 

  4. Nandkumar MA, Yamato M, Kushida A, Konno C, Hirose M, Kikuchi A, Okano T (2002) Biomaterials 23:1121–1130

    Article  CAS  Google Scholar 

  5. Ohya S, Nakayama Y, Matsuda T (2001) Biomacromolecules 2:856–863

    Article  CAS  Google Scholar 

  6. Weidner J (2001) Drug Discov Today 6:1239–1241

    Article  Google Scholar 

  7. Malmsten M, Lindman B (1992) Macromolecules 25:5440–5445

    Article  CAS  Google Scholar 

  8. Qiu Y, Park K (2001) Adv Drug Deliv Rev 53:321–339

    Article  CAS  Google Scholar 

  9. Rathi RC, Zentner GM and Jeong B (2001) Biodegradable low molecular weight triblock poly(lactide-co- glycolide) polyethylene glycol copolymers having reverse thermal gelation properties US Patent 6201072

  10. Schild HG (1992) Pro Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  11. Aoyagi TE, Mitsuhiro; Sakai, Kiyotaka; Sakurai, Yasuhisa; Okano, Teruo (2000) J Biomater Sci Polym Ed 11:10

  12. Chen G, Hoffman AS (1995) Nature 373:49–52

    Article  CAS  Google Scholar 

  13. Ebara M, Aoyagi T, Sakai K, Okano T (2000) Macromolecules 33:8312–8316

    Article  CAS  Google Scholar 

  14. Fong RB, Ding Z, Long CJ, Hoffman AS, Stayton PS (1999) Bioconjugate Chem 10:720–725

    Article  CAS  Google Scholar 

  15. Katayama Y, Sonoda T, Maeda M (2001) Macromolecules 34:8569–8573

    Article  CAS  Google Scholar 

  16. Kim MR (2002) Jeong JH and Tae Gwan Park. Biotechnol Prog 18:495–500

    Article  CAS  Google Scholar 

  17. Park K-H, Na K, Jung SY, Kim SW, Park KH, Cha KY, Chung H-M (2005) J Biosci Bioeng 99:598–602

    Article  CAS  Google Scholar 

  18. Chen T, Embree HD, Wu L-Q, Gregory F (2002) Payne. Biopolymers 64:292–302

    Article  CAS  Google Scholar 

  19. Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A (2000) Biomaterials 21:2155–2161

    Article  CAS  Google Scholar 

  20. Kuijpers AJ, Engbers GHM, Feijen J, De Smedt SC, Meyvis TKL, Demeester J, Krijgsveld J, Zaat SAJ, Dankert J (1999) Macromolecules 32:3325–3333

    Article  CAS  Google Scholar 

  21. Lee BH, Lee YM, Sohn YS, Song S-C (2002) Macromolecules 35:3876–3879

    Article  CAS  Google Scholar 

  22. Lee BH, Song S-C (2004) Macromolecules 37:4533–4537

    Article  CAS  Google Scholar 

  23. Lee SB, Song S-C, Jin J-I, Sohn YS (1999) Macromolecules 32:7820–7827

    Article  CAS  Google Scholar 

  24. Song S-C, Lee SB, Jin J-I, Sohn YS (1999) Macromolecules 32:2188–2193

    Article  CAS  Google Scholar 

  25. Kang GD, Cheon SH, Khang G, Song S-C (2006) Eur J Pharm Biopharm 63:340–346

    Article  CAS  Google Scholar 

  26. Kang GD, Cheon SH, Song S-C (2006) Int J Pharm 319:29–36

    Article  CAS  Google Scholar 

  27. Allcock HR, Kwon S (1989) Macromolecules 22:75–79

    Article  CAS  Google Scholar 

  28. Andrianov AK, Cohen S, Visscher KB, Payne LG, Allcock HR, Langer R (1993) J Control Release 27:69–77

    Article  CAS  Google Scholar 

  29. Andrianov AK, Payne LG (1996) Polyphosphazene Hydrogel Microspheres for Protein Delivery. In: Smadar Cohen HB (ed) Microparticulate Systems for the Delivery of Proteins and Vaccines (Drugs and the Pharmaceutical Sciences), 1st edn. Marcel Dekker, New York

    Google Scholar 

  30. Andrianov AK, Payne LG (1998) Adv Drug Deliv Rev 34:155–170

    Article  CAS  Google Scholar 

  31. Ahn S, Monge EC, Song S-C (2009) Langmuir 25:2407–2418

    Article  CAS  Google Scholar 

  32. Allcock HR (2003) Chemistry and applications of polyphosphazenes. John Wiley & Sons, New Jersey

    Google Scholar 

  33. Park M-R, Chun C, Ahn S-W, Ki M-H, Cho C-S, Song S-C (2010) Biomaterials 31:1349–1359

    Article  CAS  Google Scholar 

  34. Chun C, Lim HJ, Hong K-Y, Park K-H, Song S-C (2009) Biomaterials 30:6295–6308

    Article  CAS  Google Scholar 

  35. Chun C, Lee SM, Kim SY, Yang HK, Song S-C (2009) Biomaterials 30:2349–2360

    Article  CAS  Google Scholar 

  36. Chun C, Lee SM, Kim CW, Hong K-Y, Kim SY, Yang HK, Song S-C (2009) Biomaterials 30:4752–4762

    Article  CAS  Google Scholar 

  37. Sohn YS, Cho YH, Baek H, Jung O-S (1995) Macromolecules 28:7566–7568

    Article  CAS  Google Scholar 

  38. Greenstein JP, Winitz M (1961) Chemistry of the Amino Acids. John Wiley & Son, New York

    Google Scholar 

  39. Loccufier J, Crommen J (1991) Vandorpe J and Etienne Schacht. Makromol Chem Rapid Commun 12:159–165

    Article  CAS  Google Scholar 

  40. Kunz H, Waldmann H (1985) Helv Chim Acta 68:618–622

    Article  CAS  Google Scholar 

  41. Friedrich-Bochnitschek S, Waldmann H, Kunz H (1989) J Org Chem 54:751–756

    Article  CAS  Google Scholar 

  42. Kunz H, Waldmann H (1984) Angew Chem Int Ed Eng 23:71–72

    Article  Google Scholar 

  43. Waldmann H, Kunz H (1983) Liebigs Ann Chem 1983:1712–1725

    Article  Google Scholar 

  44. Allcock HR, Pucher SR, Scopelianos AG (1994) Macromolecules 27:1071–1075

    Article  CAS  Google Scholar 

  45. Evans DF and Wennerström H (1999) The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet Wiley-VCH, New York.

  46. Karlstroem G, Carlsson A, Lindman B (1990) J Phys Chem 94:5005–5015

    Article  CAS  Google Scholar 

  47. Harris JM (1992) Introduction to Biotechnical and Biomedical Applications of Poly(Ethylene Glycol). In: Harris JM (ed) Poly(Ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications (Topics in Applied Chemistry), 1st edn. Plenum Press, New York

    Google Scholar 

  48. Allcock HR, Dudley GK (1996) Macromolecules 29:1313–1319

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Ministry of Education, Science and Technology in Korea. The authors would like to thank Dr. ChangJu Chun for his kind advices and scientific discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Chang Song.

Additional information

J.-K. Cho and S. M. Lee are equally contributed to the project.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 11697 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, JK., Lee, S.M., Kim, C.W. et al. Synthesis and characterization of biodegradable thermosensitive neutral and acidic poly(organophosphazene) gels bearing carboxylic acid group. J Polym Res 18, 701–713 (2011). https://doi.org/10.1007/s10965-010-9466-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9466-5

Keywords

Navigation