Advertisement

Journal of Polymer Research

, Volume 18, Issue 4, pp 667–673 | Cite as

Macroporous polymeric hydrogels formed from acrylate modified polyvinyl alcohol macromers

  • Alexander A. Artyukhov
  • Mikhail I. Shtilman
  • Andrey N. Kuskov
  • Anna P. Fomina
  • Denis E. Lisovyy
  • Anna S. Golunova
  • Aristidis M. Tsatsakis
Original Paper

Abstract

Macroporous polymeric hydrogels for the last several years have found broad application in areas connected with medicine, especially in such new disciplines as cell and tissue engineering. In present work a novel combine approach is proposed for preparation of polyvinyl alcohol macroporous hydrogels by cross-linking of polyvinyl alcohol acrylic derivatives in the presence of heterophase of frozen aqueous media. Hydrogels prepared using this method does not need additional structure fixing and are characterized by high thermal stability in swollen state sustaining even heating to more than 100 °С. The influence of different factors and reaction conditions on the cross-linked hydrogel formation process was studied. The high yield of products (80 ÷ 95%) was observed when reaction was conducted at temperature range −12 ÷ −18 °С, concentration of macromer 4–12 weight %, and amount of initiator 0.8 ÷ 1.6 mg/ml. Moreover, the equilibrium swelling of synthesized macroporous hydrogels was investigated and it was shown that synthesized cross-linked hydrogels are characterized by high water absorption which is weakly depended on solution pH and ionic force values.

Keywords

Hydrogel Cryogel Macroporous Cross-linking Polyvinyl alcohol Swelling 

References

  1. 1.
    Shtilman MI (1993) Immobilization on polymers. VSP, TokyoGoogle Scholar
  2. 2.
    Hoffman AS (2002) Adv Drug Deliv Rev 54:3–12CrossRefGoogle Scholar
  3. 3.
    Drury JL, Mooney DJ (2003) Biomaterials 24:4337–4351CrossRefGoogle Scholar
  4. 4.
    Galaev IYu, Mattiasson B (1999) Tibtech 17:335–340Google Scholar
  5. 5.
    Ruel-Gariépy E, Leroux J (2004) Eur J Pharm Biopharm 58:409–426CrossRefGoogle Scholar
  6. 6.
    Muhlebach A, Muller B, Pharisa C, Hofmann M, Seiferling B, Guerry D (1997) J Polym Sci Part A: Polym Chem 35:3603–3611CrossRefGoogle Scholar
  7. 7.
    Dainiak MB, Galaev IYu, Kumar A, Plieva FM, Mattiasson B (2007) Adv Biochem Eng Biotechnol 106:101–127Google Scholar
  8. 8.
    Chen J, Park P, Park K (1999) Biomed Mater Res Part A 44:53–62CrossRefGoogle Scholar
  9. 9.
    Chen J, Blevins WE, Park H, Park K (2000) J Control Release 64:39–51CrossRefGoogle Scholar
  10. 10.
    Oxley RH, Corkhill PH, Fitton JH, Tighe BJ (1996) Biomaterials 14:1064–1072CrossRefGoogle Scholar
  11. 11.
    Přadný M, Lesný P, Fiala J, Vacík J, Šlouf M, Michálek J, Sukova E (2003) Collect Czech Chem Commun 68:812–822CrossRefGoogle Scholar
  12. 12.
    Michalek J, Pradny M, Artyukhov A, Slouf M, Smetana K (2005) J Mater Sci Mater Med 16(8):783–786CrossRefGoogle Scholar
  13. 13.
    Shtilman MI, Ostaeva GYu, Artyukhov AA, Tsatsakis AM, Kozlov VS (2003) Int Polym Sci Technol 30(1):47–53Google Scholar
  14. 14.
    Shtilman MI, Artyukhov AA, Kozlov VS, Tsatsakis AM (2003) Int Polym Sci Technol 30(4):73–78Google Scholar
  15. 15.
    Hickey AS, Peppas NA (1995) J Membr Sci 107:229–237CrossRefGoogle Scholar
  16. 16.
    Stammen JA, Williams S, Ku DN, Guldberg RE (2000) Biomaterials 22:799–806CrossRefGoogle Scholar
  17. 17.
    Hassan CM, Ward JH, Peppas NA (2000) Polymer 41:6729–6739CrossRefGoogle Scholar
  18. 18.
    EEl S, Nag HF (2003) Polymer 44:1647–1653CrossRefGoogle Scholar
  19. 19.
    Darwis D, Stasica P, Razzak MT, Rosiak JM (2002) Radiat Phys Chem 63:539–542CrossRefGoogle Scholar
  20. 20.
    Ruiz J, Mantecon A, Cadiz V (2001) Polymer 43:6347–6354CrossRefGoogle Scholar
  21. 21.
    Kim SJ, Park SJ, Kim SI (2003) React Funct Polym 55:53–59CrossRefGoogle Scholar
  22. 22.
    Rosiak JM, Ulanski P (1999) Radiat Phys Chem 55:139–151CrossRefGoogle Scholar
  23. 23.
    Park KR, Nho YC (2003) Radiat Phys Chem 67:361–365CrossRefGoogle Scholar
  24. 24.
    Razzak MT, Darwis D, Sukirno Z (2001) Radiat Phys Chem 62:107–113CrossRefGoogle Scholar
  25. 25.
    Zhai M, Yoshii F, Kume T, Hashim K (2002) Carbohydr Polym 50:295–303CrossRefGoogle Scholar
  26. 26.
    Kim D, Park K (2004) Polymer 45:189–196CrossRefGoogle Scholar
  27. 27.
    Dorkoosh FA, Verhoef JC, Ambagts MHC, Rafiee-Tehrani M, Borchard G, Junginger HE (2002) Eur J Pharm Sci 15:433–439CrossRefGoogle Scholar
  28. 28.
    Kuhn W, Majer H (1956) Angew Chem 68(10):345–349CrossRefGoogle Scholar
  29. 29.
    Butler AR, Bruice TC (1964) J Am Chem Soc 86(3):313–322CrossRefGoogle Scholar
  30. 30.
    Franks F (1982) Water and aqueous solutions at subzero temperatures editor. Plenum Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Alexander A. Artyukhov
    • 1
  • Mikhail I. Shtilman
    • 1
  • Andrey N. Kuskov
    • 1
  • Anna P. Fomina
    • 1
  • Denis E. Lisovyy
    • 2
  • Anna S. Golunova
    • 1
  • Aristidis M. Tsatsakis
    • 3
  1. 1.Mendeleyev University of Chemical Technology of RussiaMoscowRussian Federation
  2. 2.Lomonosov Moscow State UniversityMoscowRussian Federation
  3. 3.University of CreteHeraklionGreece

Personalised recommendations