Skip to main content
Log in

Macroporous polymeric hydrogels formed from acrylate modified polyvinyl alcohol macromers

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Macroporous polymeric hydrogels for the last several years have found broad application in areas connected with medicine, especially in such new disciplines as cell and tissue engineering. In present work a novel combine approach is proposed for preparation of polyvinyl alcohol macroporous hydrogels by cross-linking of polyvinyl alcohol acrylic derivatives in the presence of heterophase of frozen aqueous media. Hydrogels prepared using this method does not need additional structure fixing and are characterized by high thermal stability in swollen state sustaining even heating to more than 100 °С. The influence of different factors and reaction conditions on the cross-linked hydrogel formation process was studied. The high yield of products (80 ÷ 95%) was observed when reaction was conducted at temperature range −12 ÷ −18 °С, concentration of macromer 4–12 weight %, and amount of initiator 0.8 ÷ 1.6 mg/ml. Moreover, the equilibrium swelling of synthesized macroporous hydrogels was investigated and it was shown that synthesized cross-linked hydrogels are characterized by high water absorption which is weakly depended on solution pH and ionic force values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shtilman MI (1993) Immobilization on polymers. VSP, Tokyo

    Google Scholar 

  2. Hoffman AS (2002) Adv Drug Deliv Rev 54:3–12

    Article  CAS  Google Scholar 

  3. Drury JL, Mooney DJ (2003) Biomaterials 24:4337–4351

    Article  CAS  Google Scholar 

  4. Galaev IYu, Mattiasson B (1999) Tibtech 17:335–340

    CAS  Google Scholar 

  5. Ruel-Gariépy E, Leroux J (2004) Eur J Pharm Biopharm 58:409–426

    Article  Google Scholar 

  6. Muhlebach A, Muller B, Pharisa C, Hofmann M, Seiferling B, Guerry D (1997) J Polym Sci Part A: Polym Chem 35:3603–3611

    Article  Google Scholar 

  7. Dainiak MB, Galaev IYu, Kumar A, Plieva FM, Mattiasson B (2007) Adv Biochem Eng Biotechnol 106:101–127

    CAS  Google Scholar 

  8. Chen J, Park P, Park K (1999) Biomed Mater Res Part A 44:53–62

    Article  CAS  Google Scholar 

  9. Chen J, Blevins WE, Park H, Park K (2000) J Control Release 64:39–51

    Article  CAS  Google Scholar 

  10. Oxley RH, Corkhill PH, Fitton JH, Tighe BJ (1996) Biomaterials 14:1064–1072

    Article  Google Scholar 

  11. Přadný M, Lesný P, Fiala J, Vacík J, Šlouf M, Michálek J, Sukova E (2003) Collect Czech Chem Commun 68:812–822

    Article  Google Scholar 

  12. Michalek J, Pradny M, Artyukhov A, Slouf M, Smetana K (2005) J Mater Sci Mater Med 16(8):783–786

    Article  CAS  Google Scholar 

  13. Shtilman MI, Ostaeva GYu, Artyukhov AA, Tsatsakis AM, Kozlov VS (2003) Int Polym Sci Technol 30(1):47–53

    Google Scholar 

  14. Shtilman MI, Artyukhov AA, Kozlov VS, Tsatsakis AM (2003) Int Polym Sci Technol 30(4):73–78

    Google Scholar 

  15. Hickey AS, Peppas NA (1995) J Membr Sci 107:229–237

    Article  CAS  Google Scholar 

  16. Stammen JA, Williams S, Ku DN, Guldberg RE (2000) Biomaterials 22:799–806

    Article  Google Scholar 

  17. Hassan CM, Ward JH, Peppas NA (2000) Polymer 41:6729–6739

    Article  CAS  Google Scholar 

  18. EEl S, Nag HF (2003) Polymer 44:1647–1653

    Article  Google Scholar 

  19. Darwis D, Stasica P, Razzak MT, Rosiak JM (2002) Radiat Phys Chem 63:539–542

    Article  CAS  Google Scholar 

  20. Ruiz J, Mantecon A, Cadiz V (2001) Polymer 43:6347–6354

    Article  Google Scholar 

  21. Kim SJ, Park SJ, Kim SI (2003) React Funct Polym 55:53–59

    Article  CAS  Google Scholar 

  22. Rosiak JM, Ulanski P (1999) Radiat Phys Chem 55:139–151

    Article  CAS  Google Scholar 

  23. Park KR, Nho YC (2003) Radiat Phys Chem 67:361–365

    Article  CAS  Google Scholar 

  24. Razzak MT, Darwis D, Sukirno Z (2001) Radiat Phys Chem 62:107–113

    Article  CAS  Google Scholar 

  25. Zhai M, Yoshii F, Kume T, Hashim K (2002) Carbohydr Polym 50:295–303

    Article  CAS  Google Scholar 

  26. Kim D, Park K (2004) Polymer 45:189–196

    Article  CAS  Google Scholar 

  27. Dorkoosh FA, Verhoef JC, Ambagts MHC, Rafiee-Tehrani M, Borchard G, Junginger HE (2002) Eur J Pharm Sci 15:433–439

    Article  CAS  Google Scholar 

  28. Kuhn W, Majer H (1956) Angew Chem 68(10):345–349

    Article  CAS  Google Scholar 

  29. Butler AR, Bruice TC (1964) J Am Chem Soc 86(3):313–322

    Article  CAS  Google Scholar 

  30. Franks F (1982) Water and aqueous solutions at subzero temperatures editor. Plenum Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Artyukhov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artyukhov, A.A., Shtilman, M.I., Kuskov, A.N. et al. Macroporous polymeric hydrogels formed from acrylate modified polyvinyl alcohol macromers. J Polym Res 18, 667–673 (2011). https://doi.org/10.1007/s10965-010-9462-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9462-9

Keywords

Navigation