Journal of Polymer Research

, Volume 18, Issue 4, pp 489–497 | Cite as

Dynamic stress relaxation behavior of nanogel filled elastomers

  • Suman Mitra
  • Santanu Chattopadhyay
  • Anil K. Bhowmick
Original Paper


Long-time stress relaxation behavior of virgin elastomers, chemically crosslinked nanogels and nanogel filled elastomers was studied with the help of a dynamic mechanical analyzer. Sulfur crosslinked natural rubber and styrene butadiene rubber nanogels and nanocomposite gels were prepared and characterized using different methods. These gels were added in to the virgin elastomer matrix at different concentrations. Presence of crosslinked gels in elastomer matrix greatly influenced its stress relaxation behavior. The effect of draw ratio, gel loading and temperature on the stress relaxation behavior of elastomers was investigated in detail. It was found that virgin elastomers displayed extremely long-term relaxation processes and the time required to achieve equilibrium dramatically decreased with the increase in crosslink density in the case of gels. Time-temperature superposition studies revealed that stress relaxation process was accelerated and relaxation time reduced with a rise in temperature. Finally, experimental stress relaxation data were fitted with the empirical Chasset and Thirion equation with good agreement. From the fitting parameters, the characteristic relaxation time and the material parameter were estimated in order to understand the mechanism of the relaxation processes in the gels and the gel filled elastomers.


Stress relaxation Nanogels Elastomers Nanocomposite gels Relaxation time 



The authors would like to thank Mr. Kamal Hussain of Dept. of Physics, IIT Kharagpur for his help in curve fitting. Suman Mitra gratefully acknowledges the financial assistance provided by the Council of Scientific and Industrial Research (CSIR), India (Award No.: 9/81(715)/08-EMR-I dated 23.10.2008).


  1. 1.
    Bhowmick AK, Cho J, MacArthur A, Mclntyre D (1986) Polymer 27:1889CrossRefGoogle Scholar
  2. 2.
    Chakraborty SK, Bhowmick AK, De SK (1981) J Appl Polym Sci 26:4011CrossRefGoogle Scholar
  3. 3.
    MacKenzie CI, Scanlan J (1984) Polymer 25:559CrossRefGoogle Scholar
  4. 4.
    Gent AN (1962) J Appl Polym Sci 6:433CrossRefGoogle Scholar
  5. 5.
    Derham CJ (1973) J Mater Sci 8:1023CrossRefGoogle Scholar
  6. 6.
    Le HH, Lüpke T, Pham T, Radusch HJ (2003) Polymer 44:4589CrossRefGoogle Scholar
  7. 7.
    Baeurle SA, Hotta A, Gusev AA (2005) Polymer 46:4344CrossRefGoogle Scholar
  8. 8.
    Barbe A, Bökamp K, Kummerlöwe C, Sollmann H, Vennemann N, Vinzelberg S (2005) Polym Eng Sci 45:1498CrossRefGoogle Scholar
  9. 9.
    Armah JC, Birley AW, Fernando KP, Hepburn C, Tahir M (1986) Rubber Chem Technol 59:765CrossRefGoogle Scholar
  10. 10.
    Brown RP (1980) Polym Testing l:59CrossRefGoogle Scholar
  11. 11.
    Stenberg B, Peterson LO, Flink P, Björk F (1986) Rubber Chem Technol 59:70CrossRefGoogle Scholar
  12. 12.
    Björk F, Stenberg B (1990) Polymer 31:1649CrossRefGoogle Scholar
  13. 13.
    Stenberg B, Bjorkman T, Dickman O (1982) Polym Testing 3:63CrossRefGoogle Scholar
  14. 14.
    Björk F, Stenberg B (1987) J Appl Polym Sci 34:2649CrossRefGoogle Scholar
  15. 15.
    Chasset R, Thirion P (1965) In: Prins JA (ed) Proceedings of the Conference on Physics of Non-Crystalline Solids, p345. North-Holland Publishing Co, AmsterdamGoogle Scholar
  16. 16.
    Dickie R, Ferry JD (1966) J Phys Chem 70:2594CrossRefGoogle Scholar
  17. 17.
    Plazek DJ (1966) J Polym Sci Part A-2 4:745CrossRefGoogle Scholar
  18. 18.
    Curro JG, Pincus P (1983) Macromolecules 16:559CrossRefGoogle Scholar
  19. 19.
    Curro JG, Pearson DS, Helfand E (1985) Macromolecules 8:1157CrossRefGoogle Scholar
  20. 20.
    Thirion P, Monnerie L (1986) J Polym Sci Part B Polym Phys 24:2307CrossRefGoogle Scholar
  21. 21.
    Heinrich G, Vilgis TA (1992) Macromolcules 25:404CrossRefGoogle Scholar
  22. 22.
    Mitra S, Chattopadhyay S, Bhowmick AK (2008) J Appl Polym Sci 107:2755CrossRefGoogle Scholar
  23. 23.
    Mitra S, Chattopadhyay S, Bhowmick AK (2008) Rubber Chem Technol 81:842CrossRefGoogle Scholar
  24. 24.
    Mitra S, Chattopadhyay S, Bhowmick AK (2010) J Appl Polym Sci. doi: 10.1002/app.32389
  25. 25.
    Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New YorkGoogle Scholar
  26. 26.
    Ronan S, Alshuth T, Jerrams S, Murphy N (2007) Mater Design 28:1513CrossRefGoogle Scholar
  27. 27.
    Dardin A, Spiess HW, Stadler R, Samulski ET (1997) Polym Gels Networks 5:37CrossRefGoogle Scholar
  28. 28.
    de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, New YorkGoogle Scholar
  29. 29.
    de Gennes PG (1975) J Phys (Paris) 36:1199Google Scholar
  30. 30.
    Martin G, Barre`s C, Cassagnau P, Sonntag P, Garois N (2008) Polymer 49:1892CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Suman Mitra
    • 1
  • Santanu Chattopadhyay
    • 1
  • Anil K. Bhowmick
    • 1
    • 2
  1. 1.Rubber Technology CentreIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Indian Institute of Technology PatnaPatnaIndia

Personalised recommendations