Skip to main content
Log in

Dynamic stress relaxation behavior of nanogel filled elastomers

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Long-time stress relaxation behavior of virgin elastomers, chemically crosslinked nanogels and nanogel filled elastomers was studied with the help of a dynamic mechanical analyzer. Sulfur crosslinked natural rubber and styrene butadiene rubber nanogels and nanocomposite gels were prepared and characterized using different methods. These gels were added in to the virgin elastomer matrix at different concentrations. Presence of crosslinked gels in elastomer matrix greatly influenced its stress relaxation behavior. The effect of draw ratio, gel loading and temperature on the stress relaxation behavior of elastomers was investigated in detail. It was found that virgin elastomers displayed extremely long-term relaxation processes and the time required to achieve equilibrium dramatically decreased with the increase in crosslink density in the case of gels. Time-temperature superposition studies revealed that stress relaxation process was accelerated and relaxation time reduced with a rise in temperature. Finally, experimental stress relaxation data were fitted with the empirical Chasset and Thirion equation with good agreement. From the fitting parameters, the characteristic relaxation time and the material parameter were estimated in order to understand the mechanism of the relaxation processes in the gels and the gel filled elastomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bhowmick AK, Cho J, MacArthur A, Mclntyre D (1986) Polymer 27:1889

    Article  CAS  Google Scholar 

  2. Chakraborty SK, Bhowmick AK, De SK (1981) J Appl Polym Sci 26:4011

    Article  CAS  Google Scholar 

  3. MacKenzie CI, Scanlan J (1984) Polymer 25:559

    Article  CAS  Google Scholar 

  4. Gent AN (1962) J Appl Polym Sci 6:433

    Article  CAS  Google Scholar 

  5. Derham CJ (1973) J Mater Sci 8:1023

    Article  CAS  Google Scholar 

  6. Le HH, Lüpke T, Pham T, Radusch HJ (2003) Polymer 44:4589

    Article  CAS  Google Scholar 

  7. Baeurle SA, Hotta A, Gusev AA (2005) Polymer 46:4344

    Article  CAS  Google Scholar 

  8. Barbe A, Bökamp K, Kummerlöwe C, Sollmann H, Vennemann N, Vinzelberg S (2005) Polym Eng Sci 45:1498

    Article  CAS  Google Scholar 

  9. Armah JC, Birley AW, Fernando KP, Hepburn C, Tahir M (1986) Rubber Chem Technol 59:765

    Article  CAS  Google Scholar 

  10. Brown RP (1980) Polym Testing l:59

    Article  Google Scholar 

  11. Stenberg B, Peterson LO, Flink P, Björk F (1986) Rubber Chem Technol 59:70

    Article  CAS  Google Scholar 

  12. Björk F, Stenberg B (1990) Polymer 31:1649

    Article  Google Scholar 

  13. Stenberg B, Bjorkman T, Dickman O (1982) Polym Testing 3:63

    Article  CAS  Google Scholar 

  14. Björk F, Stenberg B (1987) J Appl Polym Sci 34:2649

    Article  Google Scholar 

  15. Chasset R, Thirion P (1965) In: Prins JA (ed) Proceedings of the Conference on Physics of Non-Crystalline Solids, p345. North-Holland Publishing Co, Amsterdam

    Google Scholar 

  16. Dickie R, Ferry JD (1966) J Phys Chem 70:2594

    Article  CAS  Google Scholar 

  17. Plazek DJ (1966) J Polym Sci Part A-2 4:745

    Article  CAS  Google Scholar 

  18. Curro JG, Pincus P (1983) Macromolecules 16:559

    Article  CAS  Google Scholar 

  19. Curro JG, Pearson DS, Helfand E (1985) Macromolecules 8:1157

    Article  Google Scholar 

  20. Thirion P, Monnerie L (1986) J Polym Sci Part B Polym Phys 24:2307

    Article  CAS  Google Scholar 

  21. Heinrich G, Vilgis TA (1992) Macromolcules 25:404

    Article  CAS  Google Scholar 

  22. Mitra S, Chattopadhyay S, Bhowmick AK (2008) J Appl Polym Sci 107:2755

    Article  CAS  Google Scholar 

  23. Mitra S, Chattopadhyay S, Bhowmick AK (2008) Rubber Chem Technol 81:842

    Article  CAS  Google Scholar 

  24. Mitra S, Chattopadhyay S, Bhowmick AK (2010) J Appl Polym Sci. doi:10.1002/app.32389

  25. Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  26. Ronan S, Alshuth T, Jerrams S, Murphy N (2007) Mater Design 28:1513

    Article  CAS  Google Scholar 

  27. Dardin A, Spiess HW, Stadler R, Samulski ET (1997) Polym Gels Networks 5:37

    Article  CAS  Google Scholar 

  28. de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, New York

    Google Scholar 

  29. de Gennes PG (1975) J Phys (Paris) 36:1199

    Google Scholar 

  30. Martin G, Barre`s C, Cassagnau P, Sonntag P, Garois N (2008) Polymer 49:1892

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Mr. Kamal Hussain of Dept. of Physics, IIT Kharagpur for his help in curve fitting. Suman Mitra gratefully acknowledges the financial assistance provided by the Council of Scientific and Industrial Research (CSIR), India (Award No.: 9/81(715)/08-EMR-I dated 23.10.2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Bhowmick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitra, S., Chattopadhyay, S. & Bhowmick, A.K. Dynamic stress relaxation behavior of nanogel filled elastomers. J Polym Res 18, 489–497 (2011). https://doi.org/10.1007/s10965-010-9441-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9441-1

Keywords

Navigation