Advertisement

Journal of Polymer Research

, Volume 18, Issue 2, pp 225–233 | Cite as

Copolymers of bulky fumarate: synthesis and their properties

  • Shashi D. Baruah
  • Diganta Sarmah
  • Narayan C. Laskar
Original Paper

Abstract

The free radical copolymerization of di-n-docosyl fumarate with vinyl acetate and n-alkyl (meth)acrylates was carried out in toluene at 70°C using benzoyl peroxide as an initiator. 1H NMR and carbon analysis was used to determine the copolymer compositions. Monomer reactivity ratios for high conversion polymerization were calculated by Fineman-Ross, Kelen-Tüdös and conversion extension Kelen-Tüdös methods. Gel permeation chromatography was used to determine the molecular weights and polydispersity indexes. In order to determine the stability of polymers against thermal degradation, the kinetics and mechanism of the thermal degradation of copolymers were investigated by differential scanning calorimetry and thermogravimetric analysis techniques. The energy of activation of the degradation process was determined by several thermogravimetric analysis models.

Keywords

Copolymerization Dialkyl fumarate Reactivity ratio Differential scanning calorimetry (DSC) Thermogravimetric analysis (TGA) Degradation 

Notes

Acknowledgment

The authors wish to thank Dr P. G. Rao, Director, NEIST - Jorhat for permission to publish the results.

References

  1. 1.
    Matsumoto A, Sano Y, Yoshioka M, Otsu T (1996) Radical polymerization of dicyclohexyl fumarate and its derivatives as studied by electron spin resonance spectroscopy. Eur Polym J 32:1079–1085CrossRefGoogle Scholar
  2. 2.
    Matsumoto A, Nakagawa E (1999) Evaluation of chain rigidity of poly(diisopropyl fumarate) from light scattering and viscosity in tetrahydrofuran. Eur Polym J 35:2107–2113CrossRefGoogle Scholar
  3. 3.
    Yamada B, Yoshikawa E, Shiraishi K, Miura H, Otsu T (1991) Determination of absolute rate constants for radical polymerization of diisopropyl fumarate based on a quantitative scavenge of propagating radical. Polymer 32:1892–1896CrossRefGoogle Scholar
  4. 4.
    Yamada B, Yoshikawa E, Otsu T (1992) Observation of steric effect in radical polymerization of dialkyl fumarates by spin trapping with 2, 4, 6-tri-tert-butylnitrosobenzene. Polymer 33:3245–3251CrossRefGoogle Scholar
  5. 5.
    Matsumoto A, Sano Y, Yoshioka M, Otsu T (1996) Kinetic study of radical polymerization of dialkyl fumarates using electron spin resonance spectroscopy. J Polym Sci Part A: Polym Chem 34:291–299CrossRefGoogle Scholar
  6. 6.
    Yoshioka M, Matsumoto A, Otsu T (1991) Meso and racemo aditions in propagation for radical polymerization of dialkyl fumarates I. Stereoregularity of poly(dialkyl fumarate)s. Polymer J 23:1191–1196CrossRefGoogle Scholar
  7. 7.
    Cochin D, Laschewsky A, Pantoustier N (2000) New substituted polymethylenes by free radical polymerization of bulky fumarates and their properties. Polymer 41:3895–3903CrossRefGoogle Scholar
  8. 8.
    Matsumoto A, Tarui T, Otsu T (1990) Dilute solution properties of semiflexible poly(substituted methylenes): Intrinsic viscosity of poly(diisopropyl fumarate) in benzene. Macromolecules 23:5102–5105CrossRefGoogle Scholar
  9. 9.
    Yoshioka M, Matsumoto A, Otsu T (1992) Opening mode in the propagation of dialkyl fumarates and maleates as 1, 2-disubstituted ethylenes in radical polymerization. Macromolecules 25:2837–2841CrossRefGoogle Scholar
  10. 10.
    Inomata K, Sakamani Y, Nose T, Sasaki S (1996) Solid-state structure of comb-like polymers having n-octadecyl side chains I. Cocrystallization of side chain with n-octadecanoic acid. Polymer J 28:986–991CrossRefGoogle Scholar
  11. 11.
    Inomata K, Sakamani Y, Nose T, Sasaki S (1996) Solid-state structure of comb-like polymers having n-octadecyl side chains II. Crystalline-amorphous layered structure. Polymer J 28:992–999CrossRefGoogle Scholar
  12. 12.
    Sarmah D, Baruah SD (2003) Synthesis, characterization, and thermal properties of copolymers of behenyl acrylate and behenyl fumarate. J Appl Polym Sci 90:2721–2726CrossRefGoogle Scholar
  13. 13.
    Al-Arbash AH, Elsagheer FA, Ali AAM, Elsabee MZ (1999) Glass-transition temperature of polydialkyl fumarate copolymers. J Polym Sci Part A: Polym Chem 37:1839–1845CrossRefGoogle Scholar
  14. 14.
    Sato T, Shimooka M, Seno M (1998) Radical polymerization of ortho-(1, 3-dioxolan-2-yl)phenyl ethyl fumarate involving intramolecular hydrogen abstraction and ring opening of cyclic acetal. J Polym Sci Part A: Polym Chem 36:563–572CrossRefGoogle Scholar
  15. 15.
    Yoshioka M, Otsu T (1992) Kinetic studies on the radical polymerization of isopropyl tert-butyl fumarate initiated with 2, 2′-azobis(isobutyronitrile) and dimethyl 2, 2′-azobis(isobutyrate): rates of addition and termination of the primary radicals. Macromolecules 25:559–562CrossRefGoogle Scholar
  16. 16.
    Hirano E, Zetterlund PB, Takaoka T, Yamada B, Buckley R, Jenkins ID, Busfield WK (2003) Initiation in the free radical (co) polymerization of dialkyl fumarates and dicyclohexyl fumarate/tert-butyl vinyl ether investigated by a nitroxide trapping technique. Polym Int 52:1683–1688CrossRefGoogle Scholar
  17. 17.
    Ohnishi M, Uno T, Kubo M, Itoh T (2009) Synthesis and radical polymerization of diissymetric fumarates with alkoxyethyl and bulky siloxy groups. J Polym Sci Part A: Polym Chem 47:420–433CrossRefGoogle Scholar
  18. 18.
    Cortizo MS, Laurella S, Alessandrini JL (2007) Microwave-assisted radical polymerization of dialkyl fumarates. Rad Phys Chem 76:1140–1146CrossRefGoogle Scholar
  19. 19.
    Grubisic Z, Rempp P, Benoit H (1967) A universal calibration for gel permeation chromatography. Polym Lett 5:753–759CrossRefGoogle Scholar
  20. 20.
    Odian G (2002) Principles of polymerization, 3rd edn. Wiley, Singapore, chapter 6Google Scholar
  21. 21.
    Peng HY, Yang YS, Qi GR (2002) n-Dioctadecyl fumarate-vinyl acetate copolymer: Synthesis, characterization and application as flow improver for oils. Petrol Sci Tech 20:65–75CrossRefGoogle Scholar
  22. 22.
    Laschewsky A, Cochin D (1994) Synthesis of homopolymers and copolymers of bulky fumarates, and their spreading behaviour in insoluble monolayers. Eur Polym J 30:891–899CrossRefGoogle Scholar
  23. 23.
    Zhengzhe S, Jiping X (1993) Structures and properties of dialkyl fumarates polymers. Eur Polym J 29:919–921CrossRefGoogle Scholar
  24. 24.
    McFarlane RC, Reilly PM, O’Driscoll KF (1980) Comparison of the precision of estimation of copolymerization reactivity ratios by current methods. J Polym Sci Polym Chem Ed 18:251–257CrossRefGoogle Scholar
  25. 25.
    Pitchumani S, RamiReddy C, Rajadurai S (1982) Reactivity ratios of ethyl acrylate, n-butyl methacrylate copolymer system by 1H-NMR. J Polym Sci Polym Chem Ed 20:277–282CrossRefGoogle Scholar
  26. 26.
    Brar AS, Singh G, Sankar R (2004) Analysis of quaternary carbon resonances of vinylidene chloride/methyl acrylate copolymers. Eur Polym J 40:2679–2688CrossRefGoogle Scholar
  27. 27.
    Kress AO, Mathias LJ, Cei G (1989) Copolymers of styrene and methyl α-(hydroxymethyl)acrylate: Reactivity ratios, physical behavior, and spectral properties. Macromolecules 22:537–546CrossRefGoogle Scholar
  28. 28.
    Braun D, Czerwinski WK, Disselhoff G, Tüdös F, Kelen T, Turcsanyi B (1984) Analysis of the liner methods for determining copolymerization reactivity ratios, VII. Angew Makromol Chem 125:161–205CrossRefGoogle Scholar
  29. 29.
    Braun D, Czerwinski WK, Tüdös F, Kelen T, Turcsanyi B (1990) Analysis of the liner methods for determining copolymerization reactivity ratios, VIII. Angew Makromol Chem 178:209–219CrossRefGoogle Scholar
  30. 30.
    Bauduin G, Boutevin B, Belbachir M, Maghabar R (1995) Determination of reactivity ratios in radical copolymerization: A comparison of methods for a methacrylate/N-vinylpyrrolidone system. Macromolecules 28:1750–1753CrossRefGoogle Scholar
  31. 31.
    Dube M, Sanayei RA, Penlidis A, O’Driscoll KF, Reilly PM (1991) Microcomputer program for estimation of copolymerization reactivity ratios. J Polym Sci polym Chem 29:703–708CrossRefGoogle Scholar
  32. 32.
    Otsu T, Yasuhara T, Matsumoto A (1988) Synthesis, characterization, and application of poly[substituted methylene]s. J Macromol Sci Chem A25:537–554CrossRefGoogle Scholar
  33. 33.
    Kodera Y, McCoy BJ (2002) Distribution kinetics of polymer thermogravimetric analysis: a model for chain-end and random scission. Energy Fuels 16:119–126CrossRefGoogle Scholar
  34. 34.
    Konaganti VK, Madras G (2009) Photooxidative and pyrolytic degradation of methyl methacrylate-alkyl acrylate copolymers. Polym Degrad Stab 94:1325–1335CrossRefGoogle Scholar
  35. 35.
    Cameron GG (1964) The thermal degradation of poly(methyl Methacrylate). J Polym Sci B 2:693–697CrossRefGoogle Scholar
  36. 36.
    Milovanović M, Bošković R, Tošić T, Katsikas L, Popović IG (2006) The thermal degradation of poly(diethyl fumarate). Polym Degrad Stab 91:3221–3229CrossRefGoogle Scholar
  37. 37.
    Stoliarov SI, Westmoreland PR, Nydem MR, Forney GP (2003) A reactive molecular dynamics model of thermal decomposition in polymers: I. Poly(methyl methacrylate). Polymer 44:883–894CrossRefGoogle Scholar
  38. 38.
    Freeman ES, Carroll B (1958) The application of thermoanalytical techniques to reaction kinetics. The thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate. J Phys Chem 62:394–397CrossRefGoogle Scholar
  39. 39.
    Flynn JH (1991) A general differential technique for the determination of parameters for d(α)/dt=f(α) A exp (-E/RT) energy of activation, preexponential factor and order of reaction (when applicable). J Thermal Anal 37:293–305CrossRefGoogle Scholar
  40. 40.
    Coats AW, Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nature 201:68–69CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Shashi D. Baruah
    • 1
  • Diganta Sarmah
    • 1
  • Narayan C. Laskar
    • 1
  1. 1.North East Institute of Science & Technology, Council of Scientific & Industrial ResearchJorhatIndia

Personalised recommendations