Journal of Polymer Research

, Volume 18, Issue 2, pp 207–216 | Cite as

Triple crystallization behavior of fractionated ethylene/α-olefin copolymers of different catalyst type

  • E. Tarasova
  • T. Poltimäe
  • A. Krumme
  • A. Lehtinen
  • A. Viikna
Original Paper


Non-isothermal crystallization processes in fractions of Ziegler-Natta (ZN) and single site (SS) based ethylene/1-butene and ethylene/1-hexene copolymers have been studied by differential scanning calorimetry (DSC). Fractionation of used copolymers was done according to molar mass (MM) and composition (comonomer content). It was observed in DSC scans that for fractions with high MM (larger than 10 kg/mol) in addition to the main high-temperature crystallization peak (HTCP), a very-low temperature crystallization peak (VLTCP) is present at temperatures in between 60–75 °C. Such peak is absent for the first fractions having very-low MM. The partial crystallinity and peak temperatures, obtained from VLTCP, increase with MM and level off at MM around 60–100 kg/mol. It was found that the crystallinity as related to the area of the VLTCP is catalyst type dependent, and is higher for the SS catalyst compared to the ZN. Peak temperature of VLTCP linearly decreases with increasing comonomer content at fixed MM while the partial crystallinity practically does not change with comonomer content.


Linear low-density polyethylene Ethylene/α-olefins Fractions Very-low temperature crystallization peak Differential scanning calorimetry 



The Estonian Science Foundation is acknowledged for support under grant no. 6553 and Borealis Polymers OY (Finland) for structural characterization of the studied materials. We also acknowledge the Targeted Financing of Estonian Ministry of Education and Research for the grant no. SF0142687s05.


  1. 1.
    Mathot VBF, Pijpers JFJ (1988) Integration of fundamental polymer science and technology. Proceedings of International Discussion Meeting, Rolduc Abbey, Netherlands, 26–30 April, 1987. Elsevier Applied Science, London, p 381Google Scholar
  2. 2.
    Mathot VBF, Scherrenberg RL, Pijpers MFJ, Engelen YMT (1996) New trends in polyolefin science and technology. Hosoda S. Ed.; Research Signpost, Trivandum, IndiaGoogle Scholar
  3. 3.
    Patel RM, Jain R, Story B, Chum S (2008) Polyethylene: an account of scientific discovery and industrial innovations. ACS Symposium Series. Innovations in Industrial and Engineering Chemistry 1000:71–102CrossRefGoogle Scholar
  4. 4.
    Wang C, Chu M, Lin T, Lai S, Shih H, Yang J (2001) Microstructures of a highly branched polyethylene. Polymer 42:1733–1741CrossRefGoogle Scholar
  5. 5.
    Minick J, Moet A, Hiltner A, Baer E, Chum SP (1995) Crystallization of very low density copolymers of ethylene with α-olefins. J Appl Polym Sci 58:1371–1384CrossRefGoogle Scholar
  6. 6.
    Hussein IA (2008) Nonisothermal crystallization kinetics of linear metallocene polyethylenes. J Appl Polym Sci 107:2802–2809CrossRefGoogle Scholar
  7. 7.
    Ramos J, Peristeras LD, Theodorou DN (2007) Monte Carlo simulation of short chain branched polyolefins in the Molten State. Macromolecules 40:9640–9650CrossRefGoogle Scholar
  8. 8.
    Mathot VBF (1994) Calorimetry and thermal analysis of polymers. Hanser, Munich-Germany-Vienna-New YorkGoogle Scholar
  9. 9.
    Mathot VBF, Scherrenberg RL, Pijpers TFJ (1998) Metastability and order in linear, branched and copolymerized polyethylenes. Polymer 39:4541–4559CrossRefGoogle Scholar
  10. 10.
    Zhang F, Liu J, Xie F, Fu Q, He T (2002) Polydispersity of ethylene sequence length in metallocene ethylene/a-olefin copolymers. II. Influence on crystallization and melting behavior. J Polym Sci Polym Phys 40:822–830CrossRefGoogle Scholar
  11. 11.
    Mirabella FM (2008) Crystallization and melting of a polyethylene copolymer: in situ observation by atomic force microscopy. J Appl Polym Sci 108:987–994CrossRefGoogle Scholar
  12. 12.
    Alizadeh A, Richardson L, Xu J, McCartney S, Marand H (1999) Influence of structural and topological constraints on the crystallization and melting behavior of polymers. 1. Ethylene/1-Octene Copolymers. Macromolecules 32:6221–6235CrossRefGoogle Scholar
  13. 13.
    Marand H, Alizadeh A, Farmer R, Desai R, Velikov V (2000) Influence of structural and topological constraints on the crystallization and melting behavior of polymers. 2. Polyarylene ether ether keton. Macromolecules 33:3392–3403CrossRefGoogle Scholar
  14. 14.
    Crist B, Claudio ES (1999) Isothermal crystallization of random ethylene-butene copolymers: bimodal kinetics. Macromolecules 32:8945–8951CrossRefGoogle Scholar
  15. 15.
    Canetti M, Bertini F (2010) Crystalline and supermolecular structure evolution of poly(ethylene terephthalate) during isothermal crystallization and annealing treatment by means of wide and small angle X-ray investigation. Euro Polym J 46:270–276CrossRefGoogle Scholar
  16. 16.
    Rabiej S, Goderis B, Janicki J, Mathot VBF, Koch MHJ, Groeninckx G, Reynaers H, Gelan J, Wlochowicz A (2004) Characterization of the dual crystal population in an isothermally crystallized homogeneous ethylene-1-octene copolymer. Polymer 45:8761–8778CrossRefGoogle Scholar
  17. 17.
    Tashiro K, Imanishi K, Izumi Y, Kobayashi M, Kobayashi K, Satoh M, Stein RS (1995) Cocrystallization and phase segregation of polyethylene blends between the D and H species. 7. Time-resolved synchrotron-source small-angle X-ray scattering measurements for studying the isothermal crystallization kinetics: comparison with the FTIR Data. Macromolecules 28:8477–8483CrossRefGoogle Scholar
  18. 18.
    Alamo RG, Mandelkern L (1994) The crystallization behavior of random copolymers of ethylene. Thermochim Acta 238:155–201CrossRefGoogle Scholar
  19. 19.
    Simanke AG, Alamo RG, Galland GB, Mauler RS (2001) Wide-angle X-ray scattering of random Metallocene–Ethylene copolymers with different types and concentration of comonomer. Macromolecules 34:6959–6971CrossRefGoogle Scholar
  20. 20.
    Alamo RG, Chan EKM, Mandelkern L, Voigt-Martin IG (1992) Influence of molecular weight on the melting and phase structure of random copolymers of ethylene. Macromolecules 25:6381–6394CrossRefGoogle Scholar
  21. 21.
    Ergoz E, Fatou JG, Mandelkern L (1972) Molecular weight dependence of the crystallization kinetics of linear polyethylene. I. Experimental results. Macromolecules 5:147–157CrossRefGoogle Scholar
  22. 22.
    Natta G (1955) Une nouvelle classe de polymeres d’ α-olefines ayant une régularité de structure exceptionnelle. J Polym Sci 16:143–154CrossRefGoogle Scholar
  23. 23.
    Pino P, Oschwald A, Ciardelli F, Carlini C, Chiellin E (1975) In: Chien JCW (ed) Coordination polymerization of a-Olefins. Elsevier, New YorkGoogle Scholar
  24. 24.
    Holtrup W (1977) Zur fraktionierung von polymeren durch direktextraktion. Makromol Chem 178:2335–2349CrossRefGoogle Scholar
  25. 25.
    Lehtinen A, Paukkeri R (1994) Fractionation of polypropylene according to molecular weight and tacticity. Macromol Chem Phys 195:1539–1556CrossRefGoogle Scholar
  26. 26.
    Usami T, Takayama Sh (1984) Identification of branches in low-density polyethylenes by Fourier transform infrared spectroscopy. Polym J 16:731–738CrossRefGoogle Scholar
  27. 27.
    Tarasova EV, Poltimäe T, Krumme A, Lehtinen A, Viikna A (2009) Study of very low temperature crystallization process in ethylene/α-olefin copolymers. Macromol Symp 282:175–184CrossRefGoogle Scholar
  28. 28.
    Kim M, Philips PJ (1998) Nonisothermal melting and crystallization studies of homogeneous ethylene/a-olefin random copolymers. J Appl Polym Sci 70:1893–1905CrossRefGoogle Scholar
  29. 29.
    Alamo RG, Mandelkern L (1989) Thermodynamic and structural propeties of ethylene copolymers. Macromolecules 22:1273–1277CrossRefGoogle Scholar
  30. 30.
    Mandelkern L (1971) Thermodynamic and morphological properties of crystalline polymers. J Phys Chem 75:3909–3920CrossRefGoogle Scholar
  31. 31.
    Mandelkern L, Alamo RG, Kennedy MA (1990) The interphase thickness of linear polyethylene. Macromolecules 23:4721–4723CrossRefGoogle Scholar
  32. 32.
    Failla MD, Lucas JC, Mandelkern L (1994) Supermolecular structure of random copolymers of ethylene. Macromolecules 27:1334–1337CrossRefGoogle Scholar
  33. 33.
    Liu W, Yang H, Hsiao BS, Stein RS, Liu S, Huang B (1999) Real-time crystallization and melting study of ethylene-based copolymers by SAXS, WAXD, and DSC techniques. ACS Symposium Series: Scattering from Polymers 739:187–200CrossRefGoogle Scholar
  34. 34.
    Mandelkern L (1990) The structure of crystalline polymers. Acc Chem Res 23:380–386CrossRefGoogle Scholar
  35. 35.
    Gedde UW, Janson JF, Liljenstrom G, Eklund S (1998) Molecular structure, crystallization behavior, and morphology of fractions obtained from an extrusion grade high-density polyethylene. Polym Eng Sci 28:1289–1303CrossRefGoogle Scholar
  36. 36.
    Fatou JG, Mandelkern L (1965) The effect of molecular weight on the melting temperature and fusion of polyethylene. J Phys Chem 69:417–428CrossRefGoogle Scholar
  37. 37.
    Alamo RG, Mandelkern L (1991) Crystallization kinetics of random ethylene co-polymers. Macromolecules 24:6480–6493CrossRefGoogle Scholar
  38. 38.
    Alamo RG, Domszy R, Mandelkern L (1984) Thermodynamic and structural-properties of copolymers of ethylene. J Phys Chem 88:6587–6595CrossRefGoogle Scholar
  39. 39.
    Basiura M, Gearba RI, Ivanov DA, Janicki J, Reynaers H, Groeninckx G, Bras W, Goderis B (2006) Rapidly cooled polyethylenes: on the thermal stability of the semicrystalline morphology. Macromolecules 39:8399–8411CrossRefGoogle Scholar
  40. 40.
    Rastogi S, Lippits DR, Peters GWM, Graf R, Yao Y (2005) Heterogeneity in polymer melts from melting of polymer crystals. Nat Mate 4:635–641CrossRefGoogle Scholar
  41. 41.
    Lippits DR, Rastogi S, Hhne G, Mezari B, Magusin P (2007) Heterogeneous distribution of entanglements in the polymer melt and its influence on crystallization. Macromolecules 40:1004–1010CrossRefGoogle Scholar
  42. 42.
    Psarski M, Piorkowska E, Galeski A (2000) Crystallization of polyethylene from the melt with lowered chain entanglements. Macromolecules 33:916–932CrossRefGoogle Scholar
  43. 43.
    Fan Z, Wang Y, Bu H (2003) Influence of intermolecular entanglements on crystallization behavior of ultra-high molar mass polyethylene. Polym Eng Sci 43:607–614CrossRefGoogle Scholar
  44. 44.
    Smith P, Manley J (1979) Solid solution formation and fractionation in quasi-binary systems of polyethylene fractions. Macromolecules 12:483–491CrossRefGoogle Scholar
  45. 45.
    Robelin-Souffache E, Rault J (1989) Origin of the long period and crystallinity in quenched semicrystalline polymers.1. Macromolecules 22:3581–3594CrossRefGoogle Scholar
  46. 46.
    Rousseaux F, Lemonnier M (1980) Crystallization of polymers. Part II: Fractionated polyethylene quenched from the liquid state. J Physique 41:1469–1474CrossRefGoogle Scholar
  47. 47.
    Wilfong DL (1989) LLDPE TREF fractions, crystallization behavior and morphology. Polym Mater Sci Eng 61:743–747Google Scholar
  48. 48.
    Hosoda S (1988) Structural distribution of linear low-density polyethylenes. Polym J 20:383–386CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • E. Tarasova
    • 1
  • T. Poltimäe
    • 1
  • A. Krumme
    • 1
  • A. Lehtinen
    • 2
  • A. Viikna
    • 1
  1. 1.Tallinn University of TechnologyTallinnEstonia
  2. 2.Borealis Polymers OYPorvooFinland

Personalised recommendations