Journal of Polymer Research

, Volume 18, Issue 1, pp 19–23 | Cite as

A kinetic study of in situ polyaniline–gold composite film formation

Original Paper


Chloroaurate acid (HAuCl4) was used as an oxidant and aniline (ANI) was used as a reducing agent to prepare a polyaniline–gold (PANI-Au) composite film by in situ polymerization. The formation of the composite film was monitored using a quartz crystal microbalance (QCM). The effects of the concentrations of HAuCl4 and ANI as well as the reaction temperature on the formation of the PANI-Au composite film are discussed. The kinetics of the reaction were investigated by the QCM technique. The results indicate that the kinetics of the reaction are of order 0.5 with respect to HAuCl4 and 1.5 with respect to aniline. The film growth rate increased with increasing ANI, HAuCl4 concentration and reaction temperature. The activation energy calculated from the temperature dependence of the growth rate was 40.32 ± 0.15 kJ/mol. In situ UV-visible spectra of the reaction process were obtained and compared to the reaction process using the QCM technique.


Polyaniline Kinetics PANI–gold composite film Quartz crystal microbalance (QCM) 



This work was supported by Guizhou Science and Technology Department Innovation Ability Construction projects (contract no: [2009]4001).


  1. 1.
    MacDiarmid AG (2001) Curr Appl Phys 1:269Google Scholar
  2. 2.
    Hua MY, Su YN, Chen SA (2000) Polymer 41:813CrossRefGoogle Scholar
  3. 3.
    Jeevanada T, Siddarmaiah, Annadurai V, Somashekar R (2001) J Appl Polym Sci 82:383CrossRefGoogle Scholar
  4. 4.
    Coutanceau C, Croissant MJ, Napporn T, Lamy C (2000) Electrochim Acta 46:579CrossRefGoogle Scholar
  5. 5.
    Smith JA, Josowicz M, Janata J (2005) Phys Chem Chem Phys 7:3614CrossRefGoogle Scholar
  6. 6.
    Smith JA, Josowicz M, Engelhard M, Baerb DR, Janata J (2005) Phys Chem Chem Phys 7:3619CrossRefGoogle Scholar
  7. 7.
    Li WG, Jia QX, Wang HL (2006) Polymer 47:23CrossRefGoogle Scholar
  8. 8.
    Jing S, Xing S, Yu L, Wu Y, Zhao C (2007) Mater Lett 61:2794CrossRefGoogle Scholar
  9. 9.
    Athawalea AA, Bhagwata SV, Katrea PP, Chandwadkar AJ, Karandikar P (2003) Mater Lett 57:3889CrossRefGoogle Scholar
  10. 10.
    Wang J, Neoh KG, Kang ET (2001) J Colloid Interface Sci 239:78CrossRefGoogle Scholar
  11. 11.
    Kinyanjui JM, Hatchett DW, Smith JA, Josowicz M (2004) Chem Mater 16:3390CrossRefGoogle Scholar
  12. 12.
    Ricky JT, Huang JX, Ouyang JY, Kaner RB, Yang Y (2005) Nano Lett 5:1077CrossRefGoogle Scholar
  13. 13.
    Xian YZ, Hu Y, Liu F, Xian Y, Wang HT, Jin LT (2006) Biosens Bioelectron 21:1996CrossRefGoogle Scholar
  14. 14.
    Granot E, Katz E, Basnar B, Willner I (2005) Chem Mater 17:4600CrossRefGoogle Scholar
  15. 15.
    Tian S, Liu J, Zhu T, Knoll W (2003) Chem Commun 3:2738CrossRefGoogle Scholar
  16. 16.
    Tian S, Liu J, Zhu T, Knoll W (2004) Chem Mater 16:4103CrossRefGoogle Scholar
  17. 17.
    Sarma TK, Chowdhury D, Paul A, Chattopadhyay A (2002) Chem Commun 2:1048CrossRefGoogle Scholar
  18. 18.
    Wang ZJ, Yuan JH, Han DX, Nui L, Ivaska A (2007) Nanotechnology 18:115610CrossRefGoogle Scholar
  19. 19.
    Mallick K, Witcomb MJ, Scurrell MS (2006) J Mater Sci 41:6189CrossRefGoogle Scholar
  20. 20.
    Janshoff A, Galla HJ, Steinem C (2000) Angew Chem Int Ed 39:4004Google Scholar
  21. 21.
    Skládal P (2003) J Braz Chem Soc 14:491CrossRefGoogle Scholar
  22. 22.
    Marx KA (2003) Biomacromolecules 4:1099CrossRefGoogle Scholar
  23. 23.
    Suematsu S, Oura Y, Tsujimoto H, Kanno H, Naoi K (2000) Electrochim Acta 45:3813CrossRefGoogle Scholar
  24. 24.
    Cheng N, Azzaroni O, Moya S, Huck WT (2006) Macromol Rapid Commun 27:1632CrossRefGoogle Scholar
  25. 25.
    Ayad MM, Salahuddin N, Shenashin MA (2003) J Colloid Interface Sci 263:196CrossRefGoogle Scholar
  26. 26.
    Ayad MM, Shenashin MA (2004) Eur Polym J 40:197CrossRefGoogle Scholar
  27. 27.
    Ayad MM, Rehab AF, El-Hallag IS, Amer WA (2007) Eur Polym J 43:2540CrossRefGoogle Scholar
  28. 28.
    Ma L, Yan J, Gan MY, Qiu W, He L, Li JF (2008) Polym Test 27:683CrossRefGoogle Scholar
  29. 29.
    Mo ZH, Qiu W, Yang XC, Yan J, Gu ZD (2009) J Polym Res 16:39CrossRefGoogle Scholar
  30. 30.
    Sauerbrey GZ (1959) Z Phys 155:206CrossRefGoogle Scholar
  31. 31.
    Adams PN, Laughlin PJ, Monkman AP, Kenwright AM (1996) Polymer 37:3411CrossRefGoogle Scholar
  32. 32.
    Neoh KG, Young TT, Looi NT, Kang ET, Tan KL (1997) Chem Mater 9:2906CrossRefGoogle Scholar
  33. 33.
    Han CC, Hong SP (2001) Macromolecules 34:4937CrossRefGoogle Scholar
  34. 34.
    Haba Y, Segal E, Narkis M, Titelman GI, Siegmann A (1999) Synth Met 106:59CrossRefGoogle Scholar
  35. 35.
    Wei Y, Tang X, Sun Y (1989) J Polym Sci Part A 27:2385CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Guizhou Institute of Metallurgy and Chemical EngineeringGuiyangChina
  2. 2.Guizhou Nnaomaterials Engineering CenterGuiyangChina
  3. 3.Guizhou Electric Power Testing Research InstituteGuiyangChina
  4. 4.Guizhou Nanomaterials Engineering Research Center for Applied TechnologyGuiyangChina

Personalised recommendations