Journal of Polymer Research

, Volume 17, Issue 6, pp 759–768 | Cite as

A semiempirical study of CO2 elimination in cationic polymerization of cyclic carbonates

  • Andrew J. Holder
  • Yi Liu
Original Paper


The reaction paths of 1,3-dioxan-2-one during cationic ring-opening polymerization have been explored by AM1 semiempirical calculations. A species evolution diagram has been established, and the propagation chain ends on the ether-oxygen of carbonyl functional groups have been identified as the species that ultimately lead to decarboxylation. Three measures were proposed to reduce the degree of decarboxylation based on theoretical calculations: increasing the monomer concentration; decreasing the solvent polarity; and altering the ring substituents so as to bypass the decarboxylation route. Experimental investigations on a number of substituted DOO (including 4-vinyl-1,3-dioxan-2-one and its derivatives) support this conclusion.


AM1 Cationic polymerization Expanding monomer Carbon dioxide elimination 


  1. 1.
    Ferracane JL (2005) Developing a more complete understanding of stresses produced in dental composites during polymerization. Dent Mater 21:36–42CrossRefGoogle Scholar
  2. 2.
    Sakaguchi RL, Wiltbank BD, Shah NC (2004) Critical configuration analysis of four methods for measuring polymerization shrinkage strain of composites. Dent Mater 20(4):388–396CrossRefGoogle Scholar
  3. 3.
    Endo T, Takata T, Sanda F, Ariga T, Nemoto H (1997) Cyclic carbonates, novel expandable monomers in polymerization. Macromol Rapid Commun 18:461–469CrossRefGoogle Scholar
  4. 4.
    Shibasaki Y, Sanda F, Endo T (2000) Cationic ring-opening polymerization of seven-membered cyclic carbonate with water-hydrogen chloride through activated monomer process. Macromolecules 33(10):3590–3593CrossRefGoogle Scholar
  5. 5.
    Pinzino CS, Chappelow CC, Chen S-S, Jeang L, Eick JD (2005) Cyclic carbonate reactivity / compatibility with a silorane-based matrix resin. J Dent Res 84(SI A):Abstract # 0172Google Scholar
  6. 6.
    Rokicki G (2000) Aliphatic cyclic carbonates and spiroorthocarbonates as monomers. Prog Polym Sci 25:259–342CrossRefGoogle Scholar
  7. 7.
    Sadhir RJ, Luck RM (1992) Expanding monomers: Synthesis, characterization, and applications. CRC, Boca RatonGoogle Scholar
  8. 8.
    Bowen RL (1962) Dental Filling material comprising vinyl silane treated fused silica and a binder consisting of the reaction product of bisphenol and glicidyl acrylate. US Patent Number: 3066122Google Scholar
  9. 9.
    Bowen RL (1965) Adhesive bonding of various materials to hard tooth tissues. II. Bonding to dentin promoted by a surface-active comonomer. J Dent Res 44(5):895–902Google Scholar
  10. 10.
    Millich F, Jeang L, Eick JD, Chappelow CC, Pinzino CS (1998) Elements of light-cured epoxy-based dental polymer systems. J. Dent. Res. 77:603–608CrossRefGoogle Scholar
  11. 11.
    Guggenberger R, Weinmann W (2000) Exploring beyond meth-acrylates. Am J Dent 13:82–84Google Scholar
  12. 12.
    Ferracane JL, Mitchem JC (2003) Relationship between composite contraction stress and leakage in Class V cavities. Am. J. Dent. 16(4):239–243Google Scholar
  13. 13.
    Davidson CL, Feilzer AJ (1997) Polymerization shrinkage, curing contraction, shrinkage stress, stress relief, resin composites, glass polyalkenoate cements, review. J Dent 25:435–440CrossRefGoogle Scholar
  14. 14.
    Bailey WJ (1973) Synthesis of monomers that expand on polymerization. J Elastoplast 5:142Google Scholar
  15. 15.
    Bailey WJ, Sun RLJ, Katsuki T, Endo T, Iwama H, Tsushima R, Saigou K, Bitritto MM (1977) Ring-opening polymerization with expansion in volume. In Ring-Opening Polymerization, ACS Symp. Ser. No.59, Vol. 41.Washington, D.C.Google Scholar
  16. 16.
    Bailey WJ, Katsuki H, Endo T (1974) Synthesis of spiro ortho carbonates. J. Am. Chem. Soc., Div. Polym. Chem. Prepr,155, 445Google Scholar
  17. 17.
    Bailey WJ (1975) Cationic polymerization with expansion in volume. J Macromol Sci-Chem A9(5):864Google Scholar
  18. 18.
    CRC Handbook of Chemistry and Physics, 78th Edn. CRC, 1997–1998.Google Scholar
  19. 19.
    Takata T, Sanda F, Ariga T, Nemoto N, Endo T (1997) Cyclic carbonates, novel expandable monomers on polymerization. Macromol Rapid Commun 18:461–469CrossRefGoogle Scholar
  20. 20.
    Keul H, Bacher R, Hocker H (1986) Makromol Chem 187:2579CrossRefGoogle Scholar
  21. 21.
    Murayama M, Sanda F, Endo T (1998) Macromolecules 31:919CrossRefGoogle Scholar
  22. 22.
    Rokicki G (2000) Progress in polymer. Science 25(2):259–342Google Scholar
  23. 23.
    Haba O, Tomizuka H, Endo T (2005) Macromolecules 38(9):3562–3563CrossRefGoogle Scholar
  24. 24.
    Takeuchi D, Aida T, Endo T (2000) Living ring-opening polymerization of cyclic carbonates mediated by bulky titanium bisphenolates. Macromol Chem Phys 201:2267–2275CrossRefGoogle Scholar
  25. 25.
    Kricheldorf HR, Jenssen J (1989) Cationic polymerization of trimethylene carbonate and other cyclic carbonates. J Macromol Sci-Chem A26(4):631–644CrossRefGoogle Scholar
  26. 26.
    Albertsson A-C, Sjoeling M (1992) J Mol Sci, Pure Appl Chem A29(1):43CrossRefGoogle Scholar
  27. 27.
    Ariga T, Takata T, Endo T (1997) Cationic ring-opening polymerization of cyclic carbonates with alkyl halides to yield polycarbonate without the ether unit by suppression of elimination of carbon dioxide. Macromolecules 30:737–744CrossRefGoogle Scholar
  28. 28.
    Matsuo J, Sanda F, Endo T (1998) Cationic ring-opening polymerization behavior of an aliphatic seven-membered cyclic carbonate, 1, 3-dioxepan-2-one. Macromol Chem Phys 199:97–102CrossRefGoogle Scholar
  29. 29.
    Sanda F, Fueki T, Endo T (1999) Cationic ring-opening polymerization of an exomethylene group carrying cyclic carbonate. Pseudo-living polymerization of 5-methylene-1, 3-dioxan-2one by the assistance of the exomethylene group. Macromolecules 32:4220–4224CrossRefGoogle Scholar
  30. 30.
    Nemoto N, Sanda F, Endo T (2001) Cationic ring-opening polymerization of six-membered cyclic carbonates with ester groups. J Polym Sci A: Polym Chem 39:1305–1317CrossRefGoogle Scholar
  31. 31.
    Dewar MJS, Zoebich EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909CrossRefGoogle Scholar
  32. 32.
    Alagona G, Ghio C, Latajka Z, Tomasi J (1990) Basis set superposition errors and counterpoise corrections for some basis sets evaluated for a few X-...M Dimers. J Phys Chem 94:2367CrossRefGoogle Scholar
  33. 33.
    Holder AJ, White DA, Harris CD, Eick JD, Chappelow CC (2001) A semiempirical quantum mechanical study of the cationic homopolymerization of expanding and potentially expanding monomer systems. J Mol Struct (Thoechem) 541:159–169CrossRefGoogle Scholar
  34. 34.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107:3902–3909CrossRefGoogle Scholar
  35. 35.
    AMPAC with Graphical User Interface, Ver. 8.0, Semichem: Shawnee Mission, KS, 2007Google Scholar
  36. 36.
    McIver JW, Komornicki A (1971) Force rapid geometry optimization for semiempirical molecular orbital methods. Chem Phys Lett 10:303–306CrossRefGoogle Scholar
  37. 37.
    McIver JW, Komornicki A (1972) Structure of transition states in organic reactions. General theory and applications to the cyclobutene-butadiene isomerization using the semiempirical molecular orbital method. J Am Chem Soc 94:2625–2633CrossRefGoogle Scholar
  38. 38.
    Schrenk JL, Palazzotto MC, Mann KR (1983) Inorg Chem 22:4047–4049CrossRefGoogle Scholar
  39. 39.
    Parr RG, Yang W (1984) J Am Chem Soc 106:4049–4050CrossRefGoogle Scholar
  40. 40.
    Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708–5711CrossRefGoogle Scholar
  41. 41.
    Mulliken RS (1955) J Chem Phys 23:1833–1840CrossRefGoogle Scholar
  42. 42.
    Mendez F, Gazquez JL (1994) J Am Chem Soc 116:9298–9301CrossRefGoogle Scholar
  43. 43.
    Gilardoni F, Weber J, Ward TR (1998) J Phys Chem A 102(20):3607–3613CrossRefGoogle Scholar
  44. 44.
    Lin T (1998) Photo-cationic polymerization of cyclic carbonates and vinyl ethers. Thesis, University of Missouri Kansas City, Kansas City, MOGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Missouri-Kansas CityKansas CityUSA

Personalised recommendations