Journal of Polymer Research

, Volume 17, Issue 4, pp 503–510 | Cite as

Thermo-sensitive hydrogels formed from the photocrosslinkable polypseudorotaxanes consisting of β-cyclodextrin and Pluronic F68/PCL macromer

Original Paper


To create thermo-sensitive supramolecular hydrogels with high mechanical strength, viscous gel precursors were first formed via block-selected inclusion complexation between β-cyclodextrin (β-CD) and Pluronic F68/poly(ε-caprolactone) block copolymer terminated with acryloyl groups in aqueous media, and subsequently in situ photocrosslinking was employed in the presence of a photoinitiator. The supramolecular assembly in photocrosslinked hydrogels was revealed by wide-angle X-ray diffraction (WXRD) and thermogravimetric analysis (TGA). The rheological studies demonstrated that in situ photocrosslinking could greatly improve the mechanical strength of the gellike precursors. The swelling measurements showed that as-obtained hydrogel displayed a thermo-responsive property. The temperature dependence of the hydrogels decreased with the increase of the β-CD amounts introduced. The resultant hydrogels have the potential to use as carriers for drug delivery and tissue engineering scaffolds.


Supramolecular hydrogel Inclusion complexation Photocrosslinking Mechanical strength Thermo-responsiveness 



This work was supported by Grants from the Major State Basic Research Development Program of China (973 Program) (No. 2009CB526402), the Nature Science Foundation of Hubei Province (No. 2007ABB033) and WUSE Research Fund (No. 2008Z01).


  1. 1.
    Lehn JM (1995) Supramolecular chemistry. Weinheim, VCHCrossRefGoogle Scholar
  2. 2.
    Hernandez R, Tseng HR, Wong JW, Stoddart JF, Zink JI (2004) J Am Chem Soc 126:3370–3371CrossRefGoogle Scholar
  3. 3.
    Szejtli J (1982) Cyclodextrins and their inclusion complexes. Akademiai Kiado, BudapestGoogle Scholar
  4. 4.
    Nepogodiev SA, Stoddart JF (1998) Chem Rev 98:1959–1976CrossRefGoogle Scholar
  5. 5.
    Panova IG, Topchieva IN (2001) Russ Chem Rev 70:23–44CrossRefGoogle Scholar
  6. 6.
    Szejtli J (1998) Chem Rev 98:1743–1754CrossRefGoogle Scholar
  7. 7.
    Mosher GL, Thompson DO, Swarbrich J (2002) Encyclopedia of pharmaceutical technology, 2nd Edition, Macel DekkerGoogle Scholar
  8. 8.
    Harada A, Kamachi M (1990) Macromolecules 23:2821–2823CrossRefGoogle Scholar
  9. 9.
    Fujita H, Ooya T, Kurisawa M, Mori H, Terano M, Yui N (1996) Macromol Rapid Commun 17:509–515CrossRefGoogle Scholar
  10. 10.
    Fujita H, Ooya T, Yui N (1999) Macromol Chem Phys 200:706–713CrossRefGoogle Scholar
  11. 11.
    Ikeda T, Watabe N, Ooya T, Yui N (2001) Macromol Chem Phy 202:1338–1344CrossRefGoogle Scholar
  12. 12.
    Huh KM, Ooya T, Lee WK, Sasaki S, Kwon IC, Jeong SY, Yui N (2001) Macromolecules 34:8657–8662CrossRefGoogle Scholar
  13. 13.
    Li J, Li X, Zhou Z, Ni X, Leong KW (2001) Macromolecules 34:7236–7237CrossRefGoogle Scholar
  14. 14.
    Li J, Harada A, Kamachi M (1994) Polym J 26:1019–1026CrossRefGoogle Scholar
  15. 15.
    Li J, Li X, Ni X, Wang X, Li H, Leong KW (2006) Biomaterials 27:4132–4140CrossRefGoogle Scholar
  16. 16.
    Zhao SP, Zhang LM, Ma D (2006) J Phys Chem B 110:12225–12229CrossRefGoogle Scholar
  17. 17.
    Zhao SP, Lee JW (2009) Macromol Res 17:156–162Google Scholar
  18. 18.
    Wu DQ, Wang T, Lu B, Xu XD, Cheng SX, Jiang XJ, Zhang XZ, Zhuo RX (2008) Langmuir 24:10306–10312CrossRefGoogle Scholar
  19. 19.
    Choi HS, Kontani K, Huh KM, Sasaki S, Ooya T, Lee WK, Yui N (2002) Macromol Biosci 2:298–303CrossRefGoogle Scholar
  20. 20.
    Huh KM, Cho YW, Chung H, Kwon IC, Jeong SY, Ooya T, Lee WK, Sasaki S, Yui N (2004) Macromol Biosci 4:92–99CrossRefGoogle Scholar
  21. 21.
    Nakama T, Ooya T, Yui N (2004) Polym J 36:338–344CrossRefGoogle Scholar
  22. 22.
    Choi HS, Yamamoto K, Ooya T, Yui N (2005) Chem Phys Chem 6:1081–1086Google Scholar
  23. 23.
    Wei H, Yu H, Zhang A, Sun L, Hou D, Feng Z (2005) Macromolecules 38:8833–8839CrossRefGoogle Scholar
  24. 24.
    Ha JC, Kim SY, Lee YM (1999) J Control Release 62:381–392CrossRefGoogle Scholar
  25. 25.
    Fujita H, Ooya T, Yui N (1999) Macromolecules 32:2534–2541CrossRefGoogle Scholar
  26. 26.
    Harada A, Okada M, Li J, Kamachi M (1995) Macromolecules 28:8406–8441CrossRefGoogle Scholar
  27. 27.
    Li J, Ni XP, Zhou ZH, Jeong KW (2003) J Am Chem Soc 125:1788–1795CrossRefGoogle Scholar
  28. 28.
    Wei H, He J, Sun L, Zhu K, Feng Z (2005) European Polym J 41:948–952CrossRefGoogle Scholar
  29. 29.
    Aamer KA, Sardinha H, Bhatia SR, Tew GN (2004) Biomaterials 25:1087–1093CrossRefGoogle Scholar
  30. 30.
    Al-Saden AA, Whateley TL, Florence AT (1982) J Colloid Interface Sci 90:303–309CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Key Laboratory of Green Processing and Functional Textiles of New Textile Materials of Ministry of EducationWuhan University of Science and EngineeringWuhanPeople’s Republic of China

Personalised recommendations