Journal of Polymer Research

, Volume 17, Issue 2, pp 265–272 | Cite as

A study on the properties of PC/LCP/MWCNT with and without compatibilizers

  • M. Mukherjee
  • S. Bose
  • G. C. Nayak
  • C. K. Das
Original Paper


Recent study deals with the effect of functionalized Muti-walled carbon nanotube (MWCNT) and other compatibilizers (Closite 6A and Zn++ ion coated nanosilica) on the compatibility and properties of polycarbonate (PC) and Liquid Crystalline Polymer (LCP). The nanocomposites have been melt blended using twin-screw extruder and molded in a compression mold. A remarkable enhancement of thermal, dynamic mechanical properties have been observed with the incorporation of functionalized MWCNT and compatibilizers. Zn++ ion coated nanosilica seems to be more effective as compatibilizer incase of the concerned system. Percent crystallinty associated with the crystallite size have also been increased due to the heterogeneous nucleation of the functionalized MWCNT and compatibilizers. Compatibility between PC and LCP has been studied in terms of particle size determined by Scion Image Analysis in Field Emission Scanning Electron Microscopic (FESEM) study. Dispersion of MWCNT has been exhibited by High Resolution Transmission Electron Microscope (HRTEM).


Compatibility Thermal properties Dynamic mechanical analysis Crystallinity Particle size Dispersion 


  1. 1.
    Iijima S (1991) Nature 354:56. doi: 10.1038/354056a0 CrossRefGoogle Scholar
  2. 2.
    Thess A, Lee R, Nikolaev P et al (1996) Science 273:483. doi: 10.1126/science.273.5274.483 CrossRefGoogle Scholar
  3. 3.
    Andrews R, Weisenberger MC (2004) Curr Opin Solid State Mater Sci 8:31. doi: 10.1016/j.cossms.2003.10.006 CrossRefGoogle Scholar
  4. 4.
    Breuer O, Sundararaj U (2004) Polym Compos 25:630. doi: 10.1002/pc.20058 CrossRefGoogle Scholar
  5. 5.
    Wang C, Guo Z-X, Fu S et al (2004) Prog Polym Sci 29:1079. doi: 10.1016/j.progpolymsci.2004.08.001 CrossRefGoogle Scholar
  6. 6.
    Paul DR, Newman S (1978) Polymer blends. Academic Press, New YorkGoogle Scholar
  7. 7.
    Utracki LA (1989) Polymer alloys and blends thermodynamics and rheology. Hanser, MunichGoogle Scholar
  8. 8.
    Incarnato L, Nobile MR, Frigione M et al (1993) Int Polym Process 8:191Google Scholar
  9. 9.
    Nobile MR, Acierno D, Incarnato L et al (1990) J Appl Polym Sci 41:2723. doi: 10.1002/app.1990.070411119 CrossRefGoogle Scholar
  10. 10.
    Roy S, Sahoo NG, Mukherjee M et al (2008) J Nanosci Nanotechnol 8:1. doi: 10.1166/jnn.2008.AN37 CrossRefGoogle Scholar
  11. 11.
    Tjong SC (2006) Mater Sci Eng Rep 53:73. doi: 10.1016/j.mser.2006.06.001 CrossRefGoogle Scholar
  12. 12.
    Bokobza L (2007) Polymer 48:4907. doi: 10.1016/j.polymer.2007.06.046 CrossRefGoogle Scholar
  13. 13.
    Moniruzzaman M, Winey KI (2006) Macromolecules 39:5194. doi: 10.1021/ma060733p CrossRefGoogle Scholar
  14. 14.
    Li LY, Li CY, Ni CY et al (2007) Polymer 48:3452. doi: 10.1016/j.polymer.2007.04.030 CrossRefGoogle Scholar
  15. 15.
    Morales-Teyssier O, Sanchez-Valdes S, Valle Ramos-de (2006) Macromol Mater Eng 291:1547. doi: 10.1002/mame.200600323 CrossRefGoogle Scholar
  16. 16.
    Gryshchuk O, Karger-Kocsis J, Thomann R et al (2006) Compos Part A 37:1252. doi: 10.1016/j.compositesa.2005.09.003 CrossRefGoogle Scholar
  17. 17.
    Ghose S, Watson KA, Delozier DM et al (2006) Compos Part A 37:465. doi: 10.1016/j.compositesa.2005.03.033 CrossRefGoogle Scholar
  18. 18.
    Mrozek RA, Kim BS, Holmberg VC et al (2003) Nano Lett 3:1665. doi: 10.1021/nl0347738 CrossRefGoogle Scholar
  19. 19.
    Bliznyuk VN, Singamaneni S, Sanford RL et al (2006) Polymer 47:3915. doi: 10.1016/j.polymer.2006.03.072 CrossRefGoogle Scholar
  20. 20.
    Zhao B, Hu H, Haddon RC (2004) Adv Funct Mater 14:71. doi: 10.1002/adfm.200304440 CrossRefGoogle Scholar
  21. 21.
    Ago H, Petritsch K, Shaffer MSP et al (1999) Adv Mater 11:1281. doi: 10.1002/(SICI)1521-4095(199910)11:15<1281::AID-ADMA1281>3.0.CO;2-6 CrossRefGoogle Scholar
  22. 22.
    Kumar S, Rath T, Mahaling RNJ Nanosci. Nanotechnology (accepted). in press.Google Scholar
  23. 23.
    Sahoo NG, Jung YC, Yoo HJ et al (2006) Macromol Chem Phys 207:1773. doi: 10.1002/macp.200600266 CrossRefGoogle Scholar
  24. 24.
    Kashiwagi T, Grulke E, Hilding J et al (2002) Macromol Rapid Commun 23:761. doi: 10.1002/1521-3927(20020901)23:13<761::AID-MARC761>3.0.CO;2-K CrossRefGoogle Scholar
  25. 25.
    Kashiwagi T, Shields JR, Haris RH (2003) J Appl Polym Sci 87:1541. doi: 10.1002/app. 11967 CrossRefGoogle Scholar
  26. 26.
    Mukherjee M, Das T, Bose S et al Macromol Symp Accepted, in press.Google Scholar
  27. 27.
    Kumar S, Rath T, Mahaling RN et al (2007) Composites Part A 38:1304. doi: 10.1016/j.compositesa.2006.11.006 CrossRefGoogle Scholar
  28. 28.
    Lin Q, Yee AF (1997) J Mater Sci 96:32Google Scholar
  29. 29.
    Shivakumar E, Yadaw SB, Pandey KN et al (2006) J Appl Polym Sci 100:3904. doi: 10.1002/app.22746 CrossRefGoogle Scholar
  30. 30.
    Wu TM, Chen EC, Lin YW et al (2008) Polym Eng Sci 48:1369. doi: 10.1002/pen.21094 CrossRefGoogle Scholar
  31. 31.
    Takahashi T, Yonetake K, Koyama K et al (2003) Macromol Rapid Commun 24:763. doi: 10.1002/marc.200350021 CrossRefGoogle Scholar
  32. 32.
    Alizadeh A, Sohn S, Quinn J et al (2001) Macromolecules 34:4066. doi: 10.1021/ma001417s CrossRefGoogle Scholar
  33. 33.
    Park D, Hong JW (1997) Polym J Tokyo 29:970Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • M. Mukherjee
    • 1
  • S. Bose
    • 1
  • G. C. Nayak
    • 1
  • C. K. Das
    • 1
  1. 1.Materials Science CentreIndian Institute of TechnologyKharagpurIndia

Personalised recommendations