Journal of Polymer Research

, Volume 17, Issue 2, pp 171–181 | Cite as

Structure and properties of AN/MAA/AM copolymer foam plastics

  • CHEN Ting
  • ZHANG Guangcheng
  • ZHAO Xihao
Original Paper


In this article, acrylonitrile (AN)/methacrylic acid (MAA)/acrylamide (AM) copolymer foam was prepared. DSC, TG and FTIR were adopted to analyze the chemical reactions in AN/MAA/AM copolymer foam, and confirm its molecule structure. SEM was employed to observe its cell structure, and the calculational method of resin distribution was founded basing on dodecahedron cell structural model. At last, its mechanical properties and thermal resistance were tested. The results indicate that cyclization reactions occur between adjacent AN/MAA units and MAA/AM units. Six-member imide rings, residuary MAA and AN units exist in main chains, and imide groups crosslink the chains. AN/MAA/AM copolymer foam has flat and closed cell walls with a high cell wall volume ratio. Cell wall volume ratios with the density of 32 kg/m3, 54 kg/m3 and 75 kg/m3 are 76%, 57% and 50% respectively. Because of rigid molecule structure and ideal cell structure, AN/MAA/AM copolymer foam possesses excellent mechanical properties and thermal resistance. As the densities are 32 kg/m3, 54 kg/m3 and 75 kg/m3, tensile strength are 1.00 MPa, 1.85 MPa and 2.30 MPa, compressive strength are 0.40 MPa, 1.00 MPa and 1.72 MPa, and shear strength are 0.45 MPa, 0.86 MPa and 1.29 MPa respectively. Heat distortion temperature of the copolymer foam is higher than 180 °C.


AN/MAA/AM copolymer Foam plastics Molecule structure Cell structure Mechanical properties 


  1. 1.
    Gibson LJ, Michael FA (1997) Cellular solids: structure and properties (2nd ed). Press syndicate of the University of CambridgeGoogle Scholar
  2. 2.
    Smits G (1994) Effect of cellsize reduction on polyurethane foam physical properties. J. Therm Insulation Building Envelopes 17:309–330Google Scholar
  3. 3.
    Martin N, Richard G (2003) Mechanical-morphology relationship of PS foams. J Cellular Plast 39:353–367CrossRefGoogle Scholar
  4. 4.
    Martini JE, Waldman FA, Suh NP (1982) Production and analysis of microcellular thermoplastics foams. Annual technical conference-society of plastics engineers, San Francisco 674–676Google Scholar
  5. 5.
    Sun HL, Gil SS, James EM et al (2002) Microcellular foams from polyethersulfone and polyphenylsulfone preparation and mechanical properties. Eur Polym J 38:2373–2381. doi: 10.1016/S0014-3057(02)00149-0 CrossRefGoogle Scholar
  6. 6.
    Williams MK, Holland DB, Melendez O et al (2005) Aromatic polyimide foams: factors that lead to high fire performance. Polym Degrad Stabil 88:20–27. doi: 10.1016/j.polymdegradstab.2003.12.012 CrossRefGoogle Scholar
  7. 7.
    Cano CI, Weiser ES, Kyu T et al (2005) Byron Pipes. Polyimide foams from powder: Experimental analysis of competitive diffusion phenomena. Polymer (Guildf) 46:9296–9303. doi: 10.1016/j.polymer.2005.07.056 CrossRefGoogle Scholar
  8. 8.
    Hedrick JL, Dipietro R, Plummer CJG et al (1996) Polyimide foams derived from a high Tg polyimide with grafted poly(α-methylstyrene). Polymer (Guildf) 37(23):5229–5236. doi: 10.1016/0032-3861(96)00331-X CrossRefGoogle Scholar
  9. 9.
    Servaty S, Geyer W, Rau N et al (2003) Method for producing block-shaped polymethacrylimide foamed materials, United States Patent, 6670405. 30th DecGoogle Scholar
  10. 10.
    Hermann FS (1999) PMI rigid foam plastic. Kunstsoffe 89(4):32–33Google Scholar
  11. 11.
    Hermann FS (2000) PMI foam cores find further applications. Rein Plast 44(1):36–38. doi: 10.1016/S0034-3617(00)86485-1 CrossRefGoogle Scholar
  12. 12.
    McGarva LD, Åström BT (1999) Experimental investigation of compression moulding of glass/PA12-PMI foam core sandwich components. Compos Part A 30:1171–1185. doi: 10.1016/S1359-835X(99)00028-7 CrossRefGoogle Scholar
  13. 13.
    Suna HL, James EM, Tan SC et al (2005) Microcellular foams from some high-performance composites. Polymer (Guildf) 46:6623–6632. doi: 10.1016/j.polymer.2005.05.016 CrossRefGoogle Scholar
  14. 14.
    Mahfuz H, Rangari VK, Islam MS et al (2004) Fabrication, synthesis and mechanical characterization of nanoparticles infused polyurethane foams. Compos Part A 35(4):453–460. doi: 10.1016/j.compositesa.2003.10.009 CrossRefGoogle Scholar
  15. 15.
    Chen T, Zhang GC, Liu TM (2006) Preparation and characterization of acrylonitrile/ methacylic acid copolymer foam. China Plast 20(3):70–74Google Scholar
  16. 16.
    Zhou WZ, Wang XS (2003) Main mechanical properties of foamed plastics and its mechanical model. Plast Sci & Tech 6:17–19Google Scholar
  17. 17.
    Liu C, Chuang CK, Tsiang RC (2004) Foaming of Electron-Beam Irradiated LDPE Blends Containing Recycled Polyethylene Foam. J Polym Res 11:149–159. doi: 10.1023/B:JPOL.0000031081.29087.2f CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Applied ChemistryNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations