Journal of Polymer Research

, 17:135 | Cite as

Effect of zeolite particulate filler on the properties of polyurethane composites

  • B. V. Suresh Kumar
  • Siddaramaiah
  • M. B. Shayan
  • K. S. Manjula
  • C. Ranganathaiah
  • G. V. Narasimha Rao
  • B. Basavalingu
  • K. Byrappa
Original Paper


Polymer-Zeolites composites have been prepared, using castor oil based polyurethane (PU) as a host and AlPO4-5 as particulate filler. The prepared PU/zeolite composites have been characterized for mechanical properties such as tensile strength and tensile modulus. These PU composites exhibited an improved mechanical performance compared to the unfilled PU. Thermo gravimetric analyzer (TGA) curve shows that all the chain-extended PUs are stable up to 250 °C and maximum weight loss occurs at 490 °C. The thermal stability of composites increases with increase in zeolite content. Microcrystalline parameters and micro voids of composites have been measured by using wide-angle X-ray scattering (WAXS) and Positron Annihilation Lifetime (PALS) methods respectively. The microcrystalline parameters and micro-voids from PALS indicate the interaction of the filler with the matrix is stronger beyond 5% of the filler which reflect the mechanical performance as well. Surface morphology of composites has been studied using Scanning Electron Microscopy (SEM). The photomicrograph of SEM indicates a uniform distribution of zeolite filler in the PU matrix.


Polyurethane Zeolites Mechanical properties Thermal stability Microcrystalline parameter Morphology Free volume 


  1. 1.
    Estes GM, Cooper SL, Tobolsky AV (1970) J Macromol Sci Rev Macromol Chem 4:313Google Scholar
  2. 2.
    Van Bogart JWC, Gibson PE, Cooper SL (1983) J Polym Sci Polym Phys Ed 21:65CrossRefGoogle Scholar
  3. 3.
    Ophir J, Wilkes GL (1980) J Polym Sci Polym Phys 18:1969Google Scholar
  4. 4.
    Wirpsza Z (1993) In: Kemp TJ (ed) Polyurethanes: chemistry, technology and applications. Ellis Horwood, New YorkGoogle Scholar
  5. 5.
    Blackwell J, Nagarajan MR, Hoitnik TB (1982) Polymer 23:950CrossRefGoogle Scholar
  6. 6.
    Mishra V, Murphy CJ, Sperling LH (1994) J Appl Polym Sci 53:1425CrossRefGoogle Scholar
  7. 7.
    Yenwo GM, Manson JA, Pulido J, Sperling LH (1977) J Appl Polym Sci 12:1531CrossRefGoogle Scholar
  8. 8.
    Devia N, Manson JA, Sperling LH (1979) Macromolecules 12:360CrossRefGoogle Scholar
  9. 9.
    Devia N, Manson JA, Sperling LH (1979) Polym Eng Sci 19:869CrossRefGoogle Scholar
  10. 10.
    Kumar H, Radha JC, Ranganathaiah C, Siddaramaiah (2007) Eur Polym J 43(4):1580–1587CrossRefGoogle Scholar
  11. 11.
    Kumar H, Siddaramaiah, Somashekar R, Mahesh SS (2007) Eur Polym J 43(2):611–619CrossRefGoogle Scholar
  12. 12.
    Jordhamo GM, Manson JA, Sperling LH (1986) Polym Eng Sci 26:525CrossRefGoogle Scholar
  13. 13.
    Ku WH, Liang JL, Wei KT, Liu HT, Huang CS, Fang SY, Wu WG (1991) Macromolecules 24:4605CrossRefGoogle Scholar
  14. 14.
    Walker TA, Melnichenko YB, Wignall GD, Lin JS, Spontak RJ (2003) Macromol Chem Phys 104:2064CrossRefGoogle Scholar
  15. 15.
    Gelfer MY, Song HH, Liu L, Hsiao BS, Chu B, Rafailovich M, Si M, Zaitsev V (2003) J Polym Sci Part B: Polym Phys 41:44CrossRefGoogle Scholar
  16. 16.
    Swamy BKK, Siddaramaiah (2003) J Appl Polymer Sci 90:2945CrossRefGoogle Scholar
  17. 17.
    Swamy BKK, Siddaramaiah, Somashekarappa H, Somashekar R (2004) Polymer Engg & Sci 44:772CrossRefGoogle Scholar
  18. 18.
    Baerlocher C, Meier WM, Olson DH (eds) (2001) Atlas of zeolite framework types, 5th revised edition. p 40Google Scholar
  19. 19.
    Jean YC (1990) J Microchem 42:72CrossRefGoogle Scholar
  20. 20.
    Brandt W, Dupasquier A (eds) (1983) Positron solid state physics. North Holland, AmsterdamGoogle Scholar
  21. 21.
    Ramani R, Ramachandra P, Ravichandran TSG, Ramgopal G, Gopal S, Ranganathaiah C (1995) J Appl Phys A 60:481CrossRefGoogle Scholar
  22. 22.
    Kirkegaard P, Pedersen NJ, Eldrup M (1989) Riso. Nat. Lab. Reports, M-2740, DenmarkGoogle Scholar
  23. 23.
    Ramani R, Ranganathaiah C (2001) Polym Intl 50:237CrossRefGoogle Scholar
  24. 24.
    Nakanishi H, Jean YC, Smith EG, Sandreczki TC (1989) J Polym Sci B Polym Phys 27:1419CrossRefGoogle Scholar
  25. 25.
    Nakanishi H, Wang SJ, Jean YC (1998) In: Sharma SC (ed) Positron annihilation in fluids. World Scientific, SingaporeGoogle Scholar
  26. 26.
    Tao SJ (1972) J Chem Phys 56:5499CrossRefGoogle Scholar
  27. 27.
    Eldrup M, Lightbody D, Sherwood JN (1981) Chem Phys 63:51CrossRefGoogle Scholar
  28. 28.
    Brunette CM, Hsu SL, Macknight WJ (1982) Macromolecules 15:71CrossRefGoogle Scholar
  29. 29.
    Roopa S, Siddaramaiah (2007) J Reinforced Plastics & Composites 26(7):681–686CrossRefGoogle Scholar
  30. 30.
    Parida D, Nayak P, Mishra DK, Lenka S, Nayak PL, Mohanty S, Rao KK (1995) J Appl Polym Sci 56:1731CrossRefGoogle Scholar
  31. 31.
    Floquet N, Coulomb JP, Dufau N, Andre G (2004) The J Phys Chem B 108:13107CrossRefGoogle Scholar
  32. 32.
    Kitao O, Gubbins KE (1994) Chem Phys Lett 227:545CrossRefGoogle Scholar
  33. 33.
    Kitao O, Gubbins KE (1996) J Phys Chem 100:12424CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • B. V. Suresh Kumar
    • 1
  • Siddaramaiah
    • 2
  • M. B. Shayan
    • 2
  • K. S. Manjula
    • 2
  • C. Ranganathaiah
    • 3
  • G. V. Narasimha Rao
    • 4
  • B. Basavalingu
    • 1
  • K. Byrappa
    • 1
  1. 1.Department of Studies in GeologyUniversity of MysoreMysoreIndia
  2. 2.Department of Polymer Science & TechnologySri Jayachamarajendra College of EngineeringMysoreIndia
  3. 3.Department of Studies in PhysicsUniversity of MysoreMysoreIndia
  4. 4.Center of Excellence for Structural and Chemical Characterization, International Advance Research Center for Powder Metallurgy and New Materials, Department of Science and TechnologyHyderabadIndia

Personalised recommendations