Preparation and characterization of biodegradable thermoplastic Elastomers (PLCA/PLGA blends)

  • Liansong Wang
  • Zhiping Zhang
  • Hechun Chen
  • Shenglan Zhang
  • Chengdong Xiong
Original Paper


A biodegradable elastomer (PLCA/PLGA blends) was prepared and characterized. First, poly(DL-lactide-co-ε-caprolactone) (PLCA) and poly(DL-lactide-co-glycolide) (PLGA) were synthesized. Infrared (IR) spectroscopy, 1H nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) were used to confirm the formation and structure of PLCA and PLGA. The solubility parameters of PLCA and PLGA were measured to estimate the miscibility between them. A series of PLCA/PLGA blends was prepared through solution blending. The morphology of all blends was examined by scanning electron microscope (SEM), and no obvious phase separation was detected at various ratios of PCLA and PLGA. Thermomechanical properties were characterized using thermogravimetry (TG), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA), the results showed that the PLCA/PLGA blends were a type of immiscible but compatible polymer blend. Mechanical properties, particularly stress-strain behavior, were examined; with an increase in PLGA content, the tensile strength and Young’s modulus of the blends increased dramatically, while elongation at break decreased.


Blends Miscibility Mechanical properties Thermomechanical properties 



This project is financially supported by the key sci-tech special projects and programs for prior topics from Science and Technology Department of Zhejiang Province, China (2008C11126).


  1. 1.
    Wu DF, Zhang YS, Zhang M, Zhou WD (2008) Eur Polym J 44:2171. doi: 10.1016/j.eurpolymj.2008.04.023 CrossRefGoogle Scholar
  2. 2.
    Duan B, Yuan XY, Zhu Y, Zhang YY, Li XL, Zhang Y, Yao KD (2006) Eur Polym J 42:2013. doi: 10.1016/j.eurpolymj.2006.04.021 CrossRefGoogle Scholar
  3. 3.
    Benali S, Peeterbroeck S, Brocorens P, Monteverde F, Bonnaud L, Alexandre M, Lazzaroni R, Dubois P (2008) Eur Polym J 44:1673. doi: 10.1016/j.eurpolymj.2008.03.020 CrossRefGoogle Scholar
  4. 4.
    Bhattarai N, Bhattarai SR, Khil MS, Lee DR, Kim HY (2003) Eur Polym J 39:1603. doi: 10.1016/S0014-3057(03)00057-0 CrossRefGoogle Scholar
  5. 5.
    Ding CF, Wang Y, Zhang SS (2007) Eur Polym J 43:4244. doi: 10.1016/j.eurpolymj.2007.07.032 CrossRefGoogle Scholar
  6. 6.
    Cohn D, Salomon AH (2005) Biomaterials 26:2297. doi: 10.1016/j.biomaterials.2004.07.052 CrossRefGoogle Scholar
  7. 7.
    Wang M, Chen W, Zhang H, Li XL, Zhang Y, Yao KD, Yao FL (2007) Eur Polym 43:4683. doi: 10.1016/j.eurpolymj.2007.08.012 CrossRefGoogle Scholar
  8. 8.
    Garkhal K, Verma S, Jonnalagadda S, Kumar NJ (2007) Polym Sci Part A Polym Chem 45:2755. doi: 10.1002/pola.22031 CrossRefGoogle Scholar
  9. 9.
    Huang MH, Li S, Vert M (2004) Polymer (Guildf) 45:8675. doi: 10.1016/j.polymer.2004.10.054 CrossRefGoogle Scholar
  10. 10.
    Wang WS, Ping P, Yu HJ, Chen XS, Jing XB (2006) J Polym Sci Part Polym Chem 44:5505. doi: 10.1002/pola.21643 CrossRefGoogle Scholar
  11. 11.
    Rezgui F, Swistek M, Hiver JM, G’Sell C, Sadoun T (2005) Polymer 46:7370. doi: 10.1016/j.polymer.2005.03.116 CrossRefGoogle Scholar
  12. 12.
    Teramoto N, Urata K, Ozawa K, Shibata M (2004) Polym Degrad Stabil 86:401. doi: 10.1016/j.polymdegradstab.2004.04.026 CrossRefGoogle Scholar
  13. 13.
    Chen CC, Chueh JY, Tseng H, Huang HM, Lee SY (2003) Biomaterials 24:1167. doi: 10.1016/S0142-9612(02)00466-0 CrossRefGoogle Scholar
  14. 14.
    Domb AJ (1993) J Polym Sci Part Polym Chem 31:1973. doi: 10.1002/pola.1993.080310805 CrossRefGoogle Scholar
  15. 15.
    Apohan NK, Akdemir ZS (2005) Polym Adv Technol 16:807. doi: 10.1002/pat.656 CrossRefGoogle Scholar
  16. 16.
    Jaczewska J, Raptis I, Budkowski A, Goustouridis D, Raczkowska J, Sanopoulou M, Pamula E, Bernasik A, Rysz J (2007) Synth Met 157:726. doi: 10.1016/j.synthmet.2007.07.015 CrossRefGoogle Scholar
  17. 17.
    Ravindra R, Krowidi KR, Khan AA (1998) Carbohydr Polym 36:121. doi: 10.1016/S0144-8617(98)00020-4 CrossRefGoogle Scholar
  18. 18.
    Schenderlein S, Luck M, Muller BW (2004) Int J Pharm 286:19. doi: 10.1016/j.ijpharm.2004.07.034 CrossRefGoogle Scholar
  19. 19.
    Roberts RJ, Rowe RC (1993) Int J Pharm 99:157. doi: 10.1016/0378-5173(93)90357-L CrossRefGoogle Scholar
  20. 20.
    Adamska K, Voelkel A (2005) Int J Pharm 304:11. doi: 10.1016/j.ijpharm.2005.03.040 CrossRefGoogle Scholar
  21. 21.
    Robin HB, Liu JC, Chien YW (1988) Int J Pharm 42:199. doi: 10.1016/0378-5173(88)90176-7 CrossRefGoogle Scholar
  22. 22.
    Wu PX, Zhang LC (1996) Blends and modification of polymers. China Light Industry, BeijingGoogle Scholar
  23. 23.
    Utracki LA (1989) Polymer alloys and blends, thermodynamic and rheology. Hanser, MunichGoogle Scholar
  24. 24.
    Mark HF (2004) Encyclopedia of polymer science and technology. Wiley, New YorkGoogle Scholar
  25. 25.
    Averous L, Moro L, Dole P (2000) Polymer (Guildf) 41:4157. doi: 10.1016/S0032-3861(99)00636-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Liansong Wang
    • 1
    • 2
  • Zhiping Zhang
    • 1
  • Hechun Chen
    • 1
  • Shenglan Zhang
    • 1
  • Chengdong Xiong
    • 1
  1. 1.Chengdu Institute of Organic ChemistryChengduPeople’s Republic of China
  2. 2.Graduated School of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations