Advertisement

Journal of Polymer Research

, Volume 16, Issue 4, pp 421–426 | Cite as

Preparation of polyaniline–palladium composite microflakes by one-step interface polymerization method

  • Liang Li
  • Guoping Yan
  • Jiangyu Wu
  • Xianghua Yu
  • Qingzhong Guo
  • Zhibin Ma
  • Zhiliang Huang
Article

Abstract

Polyaniline–palladium (PANi-Pd) composite microflakes were synthesized through an immiscible organic/inorganic biphasic system in the presence of poly(ethylene glycol) with molecular weight 4,000 (PEG4000). Aniline was oxidized by PdCl2 in the interface polymerization system, yielding PANi microflakes and elemental Pd nanoparticles simultaneously. Palladium nanoparticles were uniformly dispersed in the microflakes of PANi. The results of FTIR spectra suggested that the oxidation degree of PANi was affected by the initial ratio of metal ions to monomer. The PANi-Pd composites were characterized using X-ray photoelectron spectroscopy and the conductivity of the composite was measured by conventional four-probe method. Scanning and transmission electron microscopy were used to show the morphology of the composites.

Keywords

Polyaniline Palladium Interface polymerization Composites 

Notes

Acknowledgements

The work is supported by Youths Science Foundation of Wuhan Institute of Technology (Q200909).

References

  1. 1.
    Gangopadhyay R, De A (2000) Chem Mater 12:608. doi: 10.1021/cm990537f CrossRefGoogle Scholar
  2. 2.
    Li L, Kang ET, Neoh KG (2006) J Nanosci Nanotechnol 6:2571. doi: 10.1166/jnn.2006.542 CrossRefGoogle Scholar
  3. 3.
    Tian S, Liu J, Zhu T, Knoll W (2004) Chem Mater 16:4103. doi: 10.1021/cm049211j CrossRefGoogle Scholar
  4. 4.
    Alivisatos AP (1996) Science 271:933. doi: 10.1126/science.271.5251.933 CrossRefGoogle Scholar
  5. 5.
    Huang J, Kaner RB (2004) J Am Chem Soc 126:851. doi: 10.1021/ja0371754 CrossRefGoogle Scholar
  6. 6.
    Zhang LJ, Wan MX (2003) J Phys Chem B 107:6748. doi: 10.1021/jp034130g CrossRefGoogle Scholar
  7. 7.
    John H, Thomas RM, Jacob J, Mathew KT, Joseph R (2007) Polym Compos 28:588. doi: 10.1002/pc.20268 CrossRefGoogle Scholar
  8. 8.
    Mallick K, Witcomb MJ, Dinsmore A, Scurrell MS (2005) Macromol Rapid Commun 26:232. doi: 10.1002/marc.200400513 CrossRefGoogle Scholar
  9. 9.
    Celik M, Onal M (2007) J Polym Res 14:313. doi: 10.1007/s10965-007-9113-y CrossRefGoogle Scholar
  10. 10.
    Huang H, Feng X, Zhu JJ (2008) Nanotechnology 19:145607. doi: 10.1088/0957-4484/19/14/145607 CrossRefGoogle Scholar
  11. 11.
    Park JE, Park SG, Korkitu A, Hatozaki O, Oyama N (2003) J Electrochem Soc 150:A959. doi: 10.1149/1.1580134 CrossRefGoogle Scholar
  12. 12.
    Drelinkiewicz A, Hasik M, Choczynski M (1998) Mater Res Bull 33:739. doi: 10.1016/S0025-5408(98)00042-7 CrossRefGoogle Scholar
  13. 13.
    Houdayer A, Schneider R, Billaud D, Ghanbaja J, Lambert J (2005) Appl Organomet Chem 19:1239. doi: 10.1002/aoc.999 CrossRefGoogle Scholar
  14. 14.
    Bian CQ, Xue G (2007) Mater Lett 61:1299. doi: 10.1016/j.matlet.2006.07.023 CrossRefGoogle Scholar
  15. 15.
    Xia HS, Wang Q (2003) J Appl Polym Sci 87:1811. doi: 10.1002/app.11627 CrossRefGoogle Scholar
  16. 16.
    Marinakos SM, Shultz DA, Feldheim DL (1999) Adv Mater 11:34. doi: 10.1002/(SICI)1521-4095(199901)11:1<34::AID-ADMA34>3.0.CO;2-I CrossRefGoogle Scholar
  17. 17.
    Kang ET, Neoh KG, Tan KL (1998) Prog Polym Sci 23:277. doi: 10.1016/S0079-6700(97)00030-0 CrossRefGoogle Scholar
  18. 18.
    Zhou XJ, Harmer AJ, Heinig NF, Leung KT (2004) Langmuir 20:5109. doi: 10.1021/la0497301 CrossRefGoogle Scholar
  19. 19.
    Huang JX, Virji S, Weiller BH, Kaner RB (2003) J Am Chem Soc 125:314. doi: 10.1021/ja028371y CrossRefGoogle Scholar
  20. 20.
    Zhou X, Chen S, Zhang D, Guo X, Ding W, Chen Y (2006) Langmuir 22:1383. doi: 10.1021/la052105r CrossRefGoogle Scholar
  21. 21.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) In: Chastain J (ed) X-ray photoelectron spectroscopy. Perkin-Elmer, Eden Prairie, MNGoogle Scholar
  22. 22.
    Yoon SR, Hwang GH, Cho WI, Oh IH, Hong SA, Ha HY (2002) J Power Sources 106:215. doi: 10.1016/S0378-7753(01)01048-5 CrossRefGoogle Scholar
  23. 23.
    Quillard S, Louarn G, Lefrant S, Macdiarmid AG (1994) Phys Rev B 50:12496. doi: 10.1103/PhysRevB.50.12496 CrossRefGoogle Scholar
  24. 24.
    Singh R, Arora V, Tandon RP, Chandre S (1997) Polymer (Guildf) 38:4897. doi: 10.1016/S0032-3861(97)00013-X CrossRefGoogle Scholar
  25. 25.
    Zengin H, Zhou WS, Jin JY, Czerw R, Smith DW, Echegoyen L et al (2002) Adv Mater 14:1480. doi: 10.1002/1521-4095(20021016)14:20<1480::AID-ADMA1480>3.0.CO;2-O CrossRefGoogle Scholar
  26. 26.
    Kulszewicz-Bajer I, Sobczak J, Hasik M, Pretula J (1996) Polymer (Guildf) 37:25. doi: 10.1016/0032-3861(96)81596-5 CrossRefGoogle Scholar
  27. 27.
    Ghosh M, Barman A, De SK, Chatterjee S (1998) J Appl Phys 84:806. doi: 10.1063/1.368141 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Liang Li
    • 1
  • Guoping Yan
    • 1
  • Jiangyu Wu
    • 1
  • Xianghua Yu
    • 1
  • Qingzhong Guo
    • 1
  • Zhibin Ma
    • 1
  • Zhiliang Huang
    • 1
  1. 1.School of Materials Science and EngineeringWuhan Institute of TechnologyWuhanPeople’s Republic of China

Personalised recommendations