Journal of Polymer Research

, Volume 16, Issue 4, pp 395–399 | Cite as

Electrical and dielectric properties of multiwall carbon nanotube/polyaniline composites

  • Sui-Lin Shi
  • Ling-Zhen Zhang
  • Jun-Shou Li


In this paper, electrical and dielectric properties of multiwall carbon nanotubes (MWCNTs)/insulating polyaniline (PANI) composites were studied. A mixture of MWCNTs and insulating polyaniline was dispersed in an ethanol solution by ultrasonic process, subsequently dried, and was hot-pressed at 200 °C under 30 MPa. Electrical and dielectric properties of the composites were measured. The experimental results show that the dc conductivities of the composites exhibit a typical percolation behavior with a low percolation threshold of 5.85 wt.% MWCNTs content. The dielectric constant of the composites increases remarkably with the increasing MWCNTs concentration, when the MWCNTs concentration was close to percolation threshold. This may be attributed to the critical behavior of the dielectric constant near the percolation threshold as well as to the polarization effects between the clusters inside the composites.


Multiwall carbon nanotubes Polyaniline Composite Electrical conductivity Dielectric properties 



This work was supported by the National Natural Science Foundation of China (grant no. 50572122).


  1. 1.
    Moniruzzaman M, Winey KI (2006) Macromolecules 39:5194 doi: 10.1021/ma060733p CrossRefGoogle Scholar
  2. 2.
    Kymakis E, Amaratunga GAJ (2002) Appl Phys Lett 80:112 doi: 10.1063/1.1428416 CrossRefGoogle Scholar
  3. 3.
    Alexandrou I, Kymakis E, Amaratunga GAJ (2002) Appl Phys Lett 80:1435 doi: 10.1063/1.1449537 CrossRefGoogle Scholar
  4. 4.
    Hughes M, Shaffer MSP, Renouf AC, Singh C, Chen GZ, Fray DJ, Windle AH (2002) Adv Mater 14:382 doi: 10.1002/1521-4095(20020304)14:5<382::AID-ADMA382>3.0.CO;2-Y CrossRefGoogle Scholar
  5. 5.
    Ago H, Pertritsch K, Shaffer MSP, Windle AH, Friend RH (1999) Adv Mater 11:1281 doi: 10.1002/(SICI)1521-4095(199910)11:15<1281::AID-ADMA1281>3.0.CO;2-6 CrossRefGoogle Scholar
  6. 6.
    Kymakis E, Alexandou I, Amaratunga GAJ (2002) Synth Met 127:59 doi: 10.1016/S0379-6779(01)00592-6 CrossRefGoogle Scholar
  7. 7.
    Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Polymer (Guildf) 44:5893 doi: 10.1016/S0032-3861(03)00539-1 CrossRefGoogle Scholar
  8. 8.
    Seoul C, Kim YT, Baek CK (2003) J Polym Sci Part B Polym Phys 41:1572 doi: 10.1002/polb.10511 CrossRefGoogle Scholar
  9. 9.
    Ramasubramaniam R, Chen J, Liu HY (2003) Appl Phys Lett 83:2928 doi: 10.1063/1.1616976 CrossRefGoogle Scholar
  10. 10.
    Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Adv Mater 17:1186 doi: 10.1002/adma.200401649 CrossRefGoogle Scholar
  11. 11.
    Scher H, Zallen R (1970) J Chem Phys 53:3759 doi: 10.1063/1.1674565 CrossRefGoogle Scholar
  12. 12.
    Zengin H, Zhou WS, Jin JY, Czerw R, Smith DW, Echegoyen JL, Carroll DL, Foulger SH, Ballato J (2002) Adv Mater 14:1480 doi: 10.1002/1521-4095(20021016)14:20<1480::AID-ADMA1480>3.0.CO;2-O CrossRefGoogle Scholar
  13. 13.
    Sainz R, Benito AM, Tmartínez M, Galindo JF, Sotres J, Baró AM, Corraze B, Chauvet O, Dalton AB, Baughman RH, Maser WK (2005) Nanotechnology 16:S150 doi: 10.1088/0957-4484/16/5/003 CrossRefGoogle Scholar
  14. 14.
    Mottaghitalab V, Spinks GM, Wallace GG (2005) Synth Met 152:77 doi: 10.1016/j.synthmet.2005.07.154 CrossRefGoogle Scholar
  15. 15.
    Wu TM, Lin YW (2006) Polymer (Guildf) 47:3576 doi: 10.1016/j.polymer.2006.03.060 CrossRefGoogle Scholar
  16. 16.
    Nan CW (1993) Prog Mater Sci 37:1 doi: 10.1016/0079-6425(93)90004-5 CrossRefGoogle Scholar
  17. 17.
    Bergman DJ (1980) Phys Rev Lett 44:1285 doi: 10.1103/PhysRevLett.44.1285 CrossRefGoogle Scholar
  18. 18.
    Meir Y (1999) Phys Rev Lett 83:3506 doi: 10.1103/PhysRevLett.83.3506 CrossRefGoogle Scholar
  19. 19.
    Clerc JP, Giraud G, Laugier JM, Luck JM (1990) Adv Phys 39:191 doi: 10.1080/00018739000101501 CrossRefGoogle Scholar
  20. 20.
    Seo MK, Park SJ (2004) Chem Phys Lett 395:44 doi: 10.1016/j.cplett.2004.07.047 CrossRefGoogle Scholar
  21. 21.
    Long YZ, Chen ZJ, Zhang XT, Zhang J, Liu ZF (2004) Appl Phys Lett 85:1796 doi: 10.1063/1.1786370 CrossRefGoogle Scholar
  22. 22.
    Tchmutin IA, Ponomarenko AT, Shevchenko VG, Ryvkina NG, Klason C, McQueen DH (1998) J Polym Sci Part B Polym Phys 36:1847 doi: 10.1002/(SICI)1099-0488(199808)36:11<1847::AID-POLB6>3.0.CO;2-N CrossRefGoogle Scholar
  23. 23.
    Flandin L, Prasse T, Schueler R, Schulte K, Bauhofer W, Cavaille JY (1999) Phys Rev B 59:14349 doi: 10.1103/PhysRevB.59.14349 CrossRefGoogle Scholar
  24. 24.
    McLachlan DS, Heaney MB (1999) Phys Rev B 60:12746 doi: 10.1103/PhysRevB.60.12746 CrossRefGoogle Scholar
  25. 25.
    Pötschke P, Dudkin SM, Alig I (2003) Polymer (Guildf) 44:5023 doi: 10.1016/S0032-3861(03)00451-8 CrossRefGoogle Scholar
  26. 26.
    Bergman DJ, Imry Y (1977) Phys Rev Lett 39:1222 doi: 10.1103/PhysRevLett.39.1222 CrossRefGoogle Scholar
  27. 27.
    Efros AL, Shklovskii BI (1976) Phys Status Solidi B 76:475 doi: 10.1002/pssb.2220760205 CrossRefGoogle Scholar
  28. 28.
    Stroud D, Bergman DJ (1982) Phys Rev B 25:2061 doi: 10.1103/PhysRevB.25.2061 CrossRefGoogle Scholar
  29. 29.
    Wilkinson D, Langer JS, Sen PN (1983) Phys Rev B 28:1081 doi: 10.1103/PhysRevB.28.1081 CrossRefGoogle Scholar
  30. 30.
    Song Y, Noh TW, Lee S-I, Gaines JR (1986) Phys Rev B 33:904 doi: 10.1103/PhysRevB.33.904 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Shijiazhuang Mechanical Engineering CollegeShijiazhuangPeople’s Republic of China

Personalised recommendations