Journal of Polymer Research

, Volume 16, Issue 4, pp 375–380 | Cite as

Preparation and characterization of the waterborne polyurethane modified with nanosilica

  • Jing-Jing Chen
  • Chuan-Fang Zhu
  • Hong-Tao Deng
  • Zheng-Ni Qin
  • Yi-Qiong Bai


The nano-SiO2 is used to modify the waterborne polyurethane, and the morphology and performance of the waterborne polyurethane (are studied in) prepared by the in-suit polymerization method and the blending method. The properties and structure have been characterized by fourier transform infrared spectra (IR), differential scanning calorimetry (DSC), Thermal gravimetric (TG), transmittance electron microscopy (TEM) and Dynamical Mechanical Analysis(DMA). The experiment results show that, compared with the blending method, the in-suit polymerization has more advantages in that the nano-SiO2 is evenly dispersed in the waterborne polyurethane, obviously in microphase separation and better in resistance to high temperature and water.


Waterborne polyurethane Nanosilica Composite 



dibutyltin dilaureate


Differential Scanning Calorimetry


dihydroxy polydimethylsiloxane


dimethylol-propionic acid


Dynamical Mechanical Analysis


ethyl acetate


Fourier Transform Infrared Spectra


isophorone diisocyanate


Methyl ethylketone




polycapro- lactone


polycarbonate diol






Thermogravimetric Analysis


Transmittance Electron Microscopy


isophorone diamine



The authors are grateful for the financial support from the Natural Science Foundation of Hubei Province in China (Grants 2006ABA174).


  1. 1.
    Harjunalanen T, Lahtinen M (2003) The effects of altered reaction conditions on the properties of anionic poly(urethane-urea) dispersions and films cast from the dispersions. Eur Polym J 39:817–824. doi: 10.1016/S0014-3057(02)00279-3 CrossRefGoogle Scholar
  2. 2.
    Huybrechts J, Bruylants P, Vaes A, De A (2000) Surfactant-free emulsions for waterborne, two-component polyurethane coatings. Prog Org Coat 38:67–77 doi: 10.1016/S0300-9440(00)00083-7 CrossRefGoogle Scholar
  3. 3.
    Wicks ZW, Wicks DA, Rosthauser JW (2002) Two package waterborne urethane systems. Prog Org Coat 44:161–183. doi: 10.1016/S0300-9440(02)00002-4 CrossRefGoogle Scholar
  4. 4.
    Hou MH, Liu WQ, Li Y, Chen JH (2005) Waterborne polyurethane doubly modified by montmorillonite and siloxane. Yingyong HuaxueChin 22:1132–1136Google Scholar
  5. 5.
    Hou MH, Liu WQ, Li Y, Chen JH (2005) Preparation and characterization of waterborne polyurethane/silane montmorillonite nanocomposite. Shiyou HuagongChin 34:677–680Google Scholar
  6. 6.
    Kuan HC, Ma CC, Chang WP, Yuen SM, Wu HH, Lee TM (2005) Synthesis, thermal, mechanical andrheological properties of multiwall carbon nanotubewaterborne polyurethane nanocomposite. Compos Sci Technol 65:1703–1710. doi: 10.1016/j.compscitech.2005.02.017 CrossRefGoogle Scholar
  7. 7.
    Kuan HC, Chuang WP, Ma CC (2005) Synthesis and characterization of a clay/waterborne polyurethane nanocomposite. J Mater Sci 40:179–185. doi: 10.1007/s10853-005-5704-3 CrossRefGoogle Scholar
  8. 8.
    Jeong HM, Jang KH, Cho K (2003) Properties of waterborne polyurethanes based on polycarbonate diol reinforced with organophilic clay, journal of macromolecular science. Physics B 42:1249–1263Google Scholar
  9. 9.
    Kwon JY, Kim HD (2005) Preparation and properties of acid-treated multiwalled carbon nanotube/waterborne polyurethane nanocomposites. J Appl Polym Sci 96:595–604. doi: 10.1002/app.21436 CrossRefGoogle Scholar
  10. 10.
    Mamunya YeP, Shtompel VI, Lebedev EV, Pissis P, Kanapitsas A, Boiteux G (2004) Structure and water sorption of polyurethane nanocomposites based on organic and inorganic components. Eur Polym J 40:2323–2331. doi: 10.1016/j.eurpolymj.2004.06.007 CrossRefGoogle Scholar
  11. 11.
    Kuan HC, Su HY, Ma CC (2005) Synthesis and characterization of polysilicic acid nanoparticles/waterborne polyurethane nanocomposite. J Mater Sci 40:6063–6070. doi: 10.1007/s10853-005-1302-7 CrossRefGoogle Scholar
  12. 12.
    Yano S, Hick K, Kurita K (1998) Physical properties and structure of organic–inorganic hybrid materials produced by sol–gel process. Mater Sci Eng C 6:75–90. doi: 10.1016/S0928-4931(98)00043-5 CrossRefGoogle Scholar
  13. 13.
    Jesionowski T (2002) Krysztaf kiewicz, A, preparation of the hydrophilic/hydrophobic silica particles, colloids surf A. physicochem. Eng Aspects 207:49–58. doi: 10.1016/S0927-7757(02)00137-1 CrossRefGoogle Scholar
  14. 14.
    Cong SF, Yu LR (2003) Polyurethane coating, firsted, chemistry industrial publisher ltd., Perkin. Chapter 11:288Google Scholar
  15. 15.
    Chen YC, Zhou S, Yang HH, Gu GX, Wu LM (2004) Preparation and characterization of nanocomposite polyurethane. J Colloid Interface Sci 279:370–378. doi: 10.1016/j.jcis.2004.06.074 CrossRefGoogle Scholar
  16. 16.
    Zhou SX, Wu LM, Sun J, Shen WD (2002) The change of the properties of acrylic-based polyurethane via addition of nano-silica. Prog Org Coat 45:33–42. doi: 10.1016/S0300-9440(02)00085-1 CrossRefGoogle Scholar
  17. 17.
    Chen TK, Tien YI, Wei KH (2000) Synthesis and characterization of novel segmented polyurethane/clay nanocomposites. Polymer (Guildf) 41:1345–1353. doi: 10.1016/S0032-3861(99)00280-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Jing-Jing Chen
    • 1
  • Chuan-Fang Zhu
    • 1
  • Hong-Tao Deng
    • 1
  • Zheng-Ni Qin
    • 1
  • Yi-Qiong Bai
    • 1
  1. 1.College of Chemistry Central China Normal UniversityWuhanPeople’s Republic of China

Personalised recommendations