Journal of Polymer Research

, Volume 16, Issue 3, pp 279–282 | Cite as

Synthesis and characterization of macro-monomer poly(glycidyl ester) with vinyl and hydroxyl end-group by anionic ring-opening polymerization

  • Bao Chun-Lei
  • Wang Xue-Mei
  • Wang Lian-Shi
Short Communication


The macro-monomer poly(glycidyl ester) (MPGE) was obtained by anionic ring-opening polymerization of epoxy group of the glycidyl ester of VERSATIC acid (CARDURA E10 or E10) in the presence of triethylamine as catalyst and methyl acrylic acid (MAA) as initiator, which used to be copolymerized with other monomers. The macro-monomer synthesized was characterized by means of FTIR, 1H-NMR and GPC. The relationship among feed ratios of E10/MAA and degree of polymerization, molecular weight (M n) and yield of macro-monomer were analyzed by 1H-NMR. The result shows that MPGE have vinyl group as one end group and hydroxyl as another end group.


Macro-monomer Anionic ring-opening Synthesis Characterization 


  1. 1.
    Thompson MW, Waite FA (1967) Oil Chem Assoc 54:342, BPat. 1,096,912; F.A. Waite, J (1971)Google Scholar
  2. 2.
    Hagiwara T, Shin-ichi C, Kinoshita H, Masubuchi Y (2007) Synthesis of novel macromonomers with polyether possessing fluorine and their polymerization. Reactive Funct Polymers 67:1225–1232, doi: 10.1016/j.reactfunctpolym.2007.06.014 CrossRefGoogle Scholar
  3. 3.
    Qin SH, Qiu KY (2001) A new polymerizable photoiniferter for preparing poly(methyl methacrylate) macromonomer. Eur Polym J 37:711–717, doi: 10.1016/S0014-3057(00)00158-0 CrossRefGoogle Scholar
  4. 4.
    McHale R, Aldabbagh F, Carroll WM, Yamada B (2005) Efficient synthesis and copolymerization of poly(acrylic acid) and poly(acrylic ester) macromonomers: manipulation of steric factors. Macromol Chem Phys 206:2054–2066, doi: 10.1002/macp.200500269 CrossRefGoogle Scholar
  5. 5.
    Zhang W, Shiotsuki M, Masuda T (2007) Synthesis and properties of polymer brush consisting of poly(phenylacetylene) main chain and poly(dimethylsiloxane) side chains. Polymer (Guildf) 48:2548–2553, doi: 10.1016/j.polymer.2007.03.016 CrossRefGoogle Scholar
  6. 6.
    Tsukahara Y (1994) In: Mishra MK (ed) Macromolecular design: concept and practice. Polymer Frontriers International Inc., New York, p 161Google Scholar
  7. 7.
    Kahara Y, Inoue J, Ohta Y, Kohjiya S, Okamoto Y (1994) Polym J 26:1013, doi: 10.1295/polymj.26.1013 CrossRefGoogle Scholar
  8. 8.
    Tsukahara Y (1996) In: Joseph CS (ed) Polymeric materials encyclopedia, vol. 6. CRC, New York, p 3918Google Scholar
  9. 9.
    Gnanou Y (1996) In: Joseph CS (ed) Polymeric materials encyclopedia, vol. 6. CRC, New York, p 3933Google Scholar
  10. 10.
    Ito K (1998) Prog Polym Sci 23:581CrossRefGoogle Scholar
  11. 11.
    Ito K, Kawaguchi S (1999) Adv Polym Sci 142:129CrossRefGoogle Scholar
  12. 12.
    Meijs GF, Rizzardo EJ (1990) Macromol Sci Chem Phys 30:305Google Scholar
  13. 13.
    Percec V, Pugh C, Nuyken O, Pask S (1989) In: Allen G, Bevington JC (eds) Comprehensive polymer science, vol. 6. Pergamon, New York, p 281Google Scholar
  14. 14.
    Sandler SR, Berg FR (1966) J Polym Sci, Polym Chem Ed 4:1253CrossRefGoogle Scholar
  15. 15.
    Tsuruta T, Inoue S, Koinuma H (1968) Makromol Chem 112:58, doi: 10.1002/macp.1968.021120106 CrossRefGoogle Scholar
  16. 16.
    Vandenberg EJ (1985) J Polym Sci, Polym Chem Ed 23(4):915CrossRefGoogle Scholar
  17. 17.
    Slinckx M, Henry N, Krebs A, Uytterhoeven G (2000) High-solids automotive coatings. Prog Org Coat 38:163–173, doi: 10.1016/S0300-9440(00)00089-8 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations