Journal of Polymer Research

, Volume 16, Issue 3, pp 245–254 | Cite as

NanoZnO initiated polymerization of N-vinylcarbazole (NVC) and evaluation of a poly(N-vinylcarbazole)–ZnO nanocomposite



The polymerization of N-vinylcarbazole was conducted in bulk in presence of ZnO without any external initiator and a nanocomposite of poly(N-vinylcarbazole)–ZnO (PNVC–ZnO) was isolated from the system. The polymerization of N-vinylcarbazole by ZnO impregnated with acetylene black (AB) and Fe3+ was also conducted to isolate the respective AB and Fe3+ loaded PNVC–ZnO composites, PNVC–ZnO(AB) and PNVC–ZnO(Fe3+). The formation of the poly(N-vinylcarbazole) in these systems was confirmed by FTIR, UV–vis and emission spectroscopic analysis. TGA, DSC and SEM characteristics of these composites were evaluated in details. XRD analysis revealed no crystanillity in poly(N-vinylcarbazole) moiety. PNVC–ZnO was nonconducting but PNVC–ZnO(AB) and PNVC–ZnO(Fe3+) systems exhibited conductivities in the range 0.12 and 10−3 S/cm respectively. A carbocationic propagation pathway was suggested to explain the initiation of N-vinylcarbazole by Zn++ moiety in ZnO. Kinetic studies revealed that the polymerization is first order with respect to ZnO and the monomer concentration respectively.


Poly(N-vinylcarbazole) ZnO Nanocomposite Thermal stability Scanning electron micrograph Conductivity 



The authors gratefully acknowledge the financial grant from DST, Government of India in the form of a project No: SR/S5/NM-14/2003. Thanks are also due to authorities of Presidency College for facilities. Thanks are also due to Dr. Madhusudan Roy, Saha Institute of Nuclear Physics, Kolkata for the help with the thermal stability references.


  1. 1.
    Maity A, Biswas M (2007) J Ind Eng Chem Korea 12:3, and references cited thereinGoogle Scholar
  2. 2.
    Biswas M, Sinha Ray S (2001) Adv Polym Sci 155:167, and references cited thereinCrossRefGoogle Scholar
  3. 3.
    Toshima N, Hara S (1995) Prog Polym Sci 20:155, doi: 10.1016/0079-6700(94)00029-2 CrossRefGoogle Scholar
  4. 4.
    Wang ZL (2004) Mater Today 7:26, doi: 10.1016/S1369-7021(04)00286-X CrossRefGoogle Scholar
  5. 5.
    Ghosh R, Fujihara S, Basak D (2006) J Electron Mater 25:1728, doi: 10.1007/s11664-006-0226-6 CrossRefGoogle Scholar
  6. 6.
    Norton DP, Heo YW, Ivill MP, Pearton SJ, Chisholm MF, Steiner T (2004) Mater Today 7:34, doi: 10.1016/S1369-7021(04)00287-1 CrossRefGoogle Scholar
  7. 7.
    Maity A, Biswas M (2007) J Appl Polym Sci 104:4121, doi: 10.1002/app.25958 CrossRefGoogle Scholar
  8. 8.
    Mondal A, Mukherjee N, Bhar SK (2006) Mater Lett 60:1748, doi: 10.1016/j.matlet.2005.12.011 CrossRefGoogle Scholar
  9. 9.
    Wang S, Yang S, Yang C, Li Z, Wang Z, Ge W (2000) J Phys Chem B 104:11853, doi: 10.1021/jp0005064 CrossRefGoogle Scholar
  10. 10.
    Pearson JM (1990) In: Kroschwitz JI (ed) Concise encyclopedia of polymer science and engineering. Wiley Interscience, New York, pp 1241–1244Google Scholar
  11. 11.
    Pearson JM (1990) In: Kroschwitz JI (ed) Concise encyclopedia of polymer science and engineering. Wiley Interscience, New York, p 1242Google Scholar
  12. 12.
    Shalady SW (1981) In: Turi EA (ed) Thermal characterization of polymeric materials, ch. 3. Academic, New York, p 347, and references cited thereinGoogle Scholar
  13. 13.
    Biswas M, Chakravarty D (1972) In: Butler GB (ed) Reviews in macromolecular chemistry. Marcel Dekker, New York, p 197, 201–205Google Scholar
  14. 14.
    Srinivasan G, Kumar J (2006) J Cryst Res Technol 9:893, doi: 10.1002/crat.200510690 CrossRefGoogle Scholar
  15. 15.
    Block H, Bowker SN, Walker SN (1978) Polymer (Guildf) 19:531, doi: 10.1016/0032-3861(78)90277-X CrossRefGoogle Scholar
  16. 16.
    Wen B, Huang Y, Boland JJ (2008) J Phys Chem C 112:106, doi: 10.1021/jp076789i CrossRefGoogle Scholar
  17. 17.
    Pearson JM, Stolka M (1981) PolyN-vinylcarbazole, polymer monographs, vol. 6. Gordon and Breach, New YorkGoogle Scholar
  18. 18.
    Ballav N, Maity A, Biswas M (2004) Mater Chem Phys 87:120, doi: 10.1016/j.matchemphys.2004.05.006 CrossRefGoogle Scholar
  19. 19.
    Ballav N, Biswas M (2005) Polym Int 54:725–729, doi: 10.1002/pi.1767 CrossRefGoogle Scholar
  20. 20.
    Maity A, Biswas M (2004) Polym J 36:1, doi: 10.1295/polymj.36.812 CrossRefGoogle Scholar
  21. 21.
    Maity A, Biswas M (2006) Int J Polym Mater 55:1, doi: 10.1080/009140390925071 CrossRefGoogle Scholar
  22. 22.
    Frommer JE, Chance RR (1990) In: Kroschwitz JI (ed) Concise encyclopedia of polymer science and engineering. Wiley Interscience, New York, pp 297–300Google Scholar
  23. 23.
    Baibarac M, Gomez-Romero P, Lira-Cantu M, Casaň-Pastor N, Mestres N, Lefrant S (2006) Eur Polym J 42:2302, doi: 10.1016/j.eurpolymj.2006.05.019 CrossRefGoogle Scholar
  24. 24.
    Biswas M, Mishra PK (1973) Makromol Chem 163:37, doi: 10.1002/macp.1973.021630103 CrossRefGoogle Scholar
  25. 25.
    Biswas M, Maity MM, Ganguly ND (1962) Makromol Chem 124:263, doi: 10.1002/macp.1969.021240127 CrossRefGoogle Scholar
  26. 26.
    Lee JD (2002) Concise inorganic chemistry. Blackwell, LondonGoogle Scholar
  27. 27.
    Tsuji K, Takamura K, Nishii M, Hyashi K, Okamura S (1966) J Polym Sci A-1 4:2028CrossRefGoogle Scholar
  28. 28.
    Biswas M (1976) J Macromol Sci Revs Macromol Chem C-14(1):1Google Scholar
  29. 29.
    Ellinger LP (1968) Advances in macromolecular chemistry, vol. 1. Academic, New York, p 169, doi: 10.1016/0032-3861(64)90207-1
  30. 30.
    Plesch PH, Pac J (1967) Polymer (Guildf) 8:237, doi: 10.1016/0032-3861(67)90025-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of ChemistryPresidency CollegeKolkataIndia

Personalised recommendations