Skip to main content
Log in

Influence of cocatalyst on the stereoselectivity and productivity of styrene polymerization reactions

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Influence of different cocatalysts on the polymerization reaction of styrene using heterogeneous nanoparticle NA-MgO and NA-TiO2 (anatase) supported bis (cyclopentadienyl) zirconium dichloride catalysts is studied. Methyaluminoxane, trityl tetrakis(pentafluorophenyl)borate(1), dimethylanilinium tetrakis (pentafluoro-phenyl)borate (2) and tris(pentafluorophenyl)borane (3) are used as cocatalysts for this study. The productivity and stereoselectivity of the catalysts systems are found to be highest with MAO and lowest with the borane 3 (MAO > 1> 2 > 3). Catalysts derived from the borane 3 yield amorphous atactic polystyrenes but those from cocatalysts MAO, 1, or 2 yield crystalline, syndiotactic polystyrenes under the same reaction conditions. Effects of addition of various scavengers and solvents with different polarities on styrene polymerizations are also reported here. Characterization of the obtained polymers is done by Gel Permeation Chromatography, 13C-NMR spectroscopy and Differential Scanning Calorimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Brintzinger HH, Fischer D, Mulhaupt R, Rieger B, Waymouth RM (1995) Angew Chem Int Ed Engl 34:1143–1170

    Article  CAS  Google Scholar 

  2. Scheirs J, Kaminsky W (2000) (eds) Metallocene-based polyolefins vols. 1 and 2. Wiley: Chichester

  3. Resconi L, Cavallo L, Fait A, Piemontesi F (2000) Chem Rev 100:1253–1346

    Article  CAS  Google Scholar 

  4. Baumann R, Davis WM, Schrock RR (1997) J Am Chem Soc 119:3830–3831

    Article  CAS  Google Scholar 

  5. Spence REVH, Parvez M, Sun Y, Piers WE, Yap GPA (1997) J Am Chem Soc 119:5132–5143

    Article  Google Scholar 

  6. Yang X, Stern CL, Marks TJ (1992) Angew Chem Int Ed Engl 31:1375–1377

    Article  Google Scholar 

  7. Sivaram S, Reddy SS (1995) Prog Polym Sci 20:309–367

    Article  Google Scholar 

  8. Harlan CJ, Bott SG, Barron AT (1995) J Am Chem Soc 117:6465–6474

    Article  CAS  Google Scholar 

  9. Coates GW, Waymouth RM (1995) Science 267:217–219

    Article  CAS  Google Scholar 

  10. Giradello MA, Marks TJ, Eisen MS, Stern CL (1995) J Am Chem Soc 117:12114–12129

    Article  Google Scholar 

  11. Kaminsky W, Engehausen R, Köpf J (1995) Angew Chem Int Ed Engl 34:2273–2275

    Article  CAS  Google Scholar 

  12. Chen EYX, Marks TJ (2000) Chem Rev 100:1391–1434

    Article  CAS  Google Scholar 

  13. Straus DA, Zhang C, Tilley TD (1989) J Organomet Chem 369:C13–C17

    Article  CAS  Google Scholar 

  14. Chien JC, Tsai WM, Rausch MD (1991) J Am Chem Soc 113:8570–8571

    Article  CAS  Google Scholar 

  15. Turner HW (1988) Eur Pat Appl. EP 0 277 004 A1 (Exxon Chemical)

  16. Hlatky GG, Upton DJ, Turner HW (1991), PCT Int Appl. WO 91/09882 (Exxon Chemical)

  17. Chen YX, Stern CL, Yang ST, Marks TJ (1996) J Am Chem Soc 118:12451–12452

    Article  CAS  Google Scholar 

  18. Chen YX, Stern CL, Marks TJ (1997) J Am Chem Soc 119:2582–2583

    Article  CAS  Google Scholar 

  19. Chen YX, Metz MV, Li LT, Stern CL, Marks TJ (1998) J Am Chem Soc 120:6287–6305

    Article  CAS  Google Scholar 

  20. Chien JC, Song W, Rausch MD (1994) J Polym Sci A Polym Chem 32:2387–2393

    Article  CAS  Google Scholar 

  21. Deck PA, Beswick CL, Marks TJ (1998) J Am Chem Soc 120:1772–1784

    Article  CAS  Google Scholar 

  22. Bochmann M (2004) J Organomet Chem 689:3982–3998

    Article  CAS  Google Scholar 

  23. Hlatky GG (2000) Chem Rev 100:1347–1376

    Article  CAS  Google Scholar 

  24. Beaufort L, Benvenuti F, Noels AF (2006) J Mol Catal A Chem 260:215–220

    Article  CAS  Google Scholar 

  25. Kantam ML, Ghosh S, Aziz K, Sreedhar B, Choudary BM (2005) J Mol Catal A Chem 240:103–108

    CAS  Google Scholar 

  26. Tomostu N, Ishihata N, Newman TH, Malanga MT (1998) J Mol Catal A Chem 128:167–190

    Article  Google Scholar 

  27. Pó R, Cardi N (1996) Prog Polym Sci 21:47–88

    Article  Google Scholar 

  28. Lin S, Tagge CD, Waymouth RM, Nele M, Collins S, Pinto JC (2000) J Am Chem Soc 122:11275–11285

    Article  CAS  Google Scholar 

  29. Hauptman E, Waymouth RM, Ziller JW (1995) J Am Chem Soc 117:11586–11587

    Article  CAS  Google Scholar 

  30. Bruce MD, Coates GW, Hauptman E, Waymouth RM, Ziller JW (1997) J Am Chem Soc 119:11174–11182

    Article  CAS  Google Scholar 

  31. Wilmes GM, Lin S, Waymouth RM (2002) Macromolecules 35:5382–5387

    Article  CAS  Google Scholar 

  32. Liu Z, Somsook E, Landis CR (2001) J Am Chem Soc 123:2915–2916

    Article  CAS  Google Scholar 

  33. Liu Z, Somsook E, White CB, Rosaaen KA, Landis CR (2001) J Am Chem Soc 123:11193–11207

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank NFC, Hyderabad, India, for providing zirconium chloride.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sutapa Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, S. Influence of cocatalyst on the stereoselectivity and productivity of styrene polymerization reactions. J Polym Res 16, 117–124 (2009). https://doi.org/10.1007/s10965-008-9209-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-008-9209-z

Keywords

Navigation