Journal of Polymer Research

, Volume 16, Issue 2, pp 117–124 | Cite as

Influence of cocatalyst on the stereoselectivity and productivity of styrene polymerization reactions



Influence of different cocatalysts on the polymerization reaction of styrene using heterogeneous nanoparticle NA-MgO and NA-TiO2 (anatase) supported bis (cyclopentadienyl) zirconium dichloride catalysts is studied. Methyaluminoxane, trityl tetrakis(pentafluorophenyl)borate(1), dimethylanilinium tetrakis (pentafluoro-phenyl)borate (2) and tris(pentafluorophenyl)borane (3) are used as cocatalysts for this study. The productivity and stereoselectivity of the catalysts systems are found to be highest with MAO and lowest with the borane 3 (MAO > 1> 2 > 3). Catalysts derived from the borane 3 yield amorphous atactic polystyrenes but those from cocatalysts MAO, 1, or 2 yield crystalline, syndiotactic polystyrenes under the same reaction conditions. Effects of addition of various scavengers and solvents with different polarities on styrene polymerizations are also reported here. Characterization of the obtained polymers is done by Gel Permeation Chromatography, 13C-NMR spectroscopy and Differential Scanning Calorimetry.


NA (Nano Active) Heterogeneous nanoparticle supported bis (cyclopentadienyl) zirconium dichloride catalyst Cocatalyst Polymerization Stereo regularity Atactic polymer Syndiotactic polymer 



We thank NFC, Hyderabad, India, for providing zirconium chloride.


  1. 1.
    Brintzinger HH, Fischer D, Mulhaupt R, Rieger B, Waymouth RM (1995) Angew Chem Int Ed Engl 34:1143–1170CrossRefGoogle Scholar
  2. 2.
    Scheirs J, Kaminsky W (2000) (eds) Metallocene-based polyolefins vols. 1 and 2. Wiley: ChichesterGoogle Scholar
  3. 3.
    Resconi L, Cavallo L, Fait A, Piemontesi F (2000) Chem Rev 100:1253–1346CrossRefGoogle Scholar
  4. 4.
    Baumann R, Davis WM, Schrock RR (1997) J Am Chem Soc 119:3830–3831CrossRefGoogle Scholar
  5. 5.
    Spence REVH, Parvez M, Sun Y, Piers WE, Yap GPA (1997) J Am Chem Soc 119:5132–5143CrossRefGoogle Scholar
  6. 6.
    Yang X, Stern CL, Marks TJ (1992) Angew Chem Int Ed Engl 31:1375–1377CrossRefGoogle Scholar
  7. 7.
    Sivaram S, Reddy SS (1995) Prog Polym Sci 20:309–367CrossRefGoogle Scholar
  8. 8.
    Harlan CJ, Bott SG, Barron AT (1995) J Am Chem Soc 117:6465–6474CrossRefGoogle Scholar
  9. 9.
    Coates GW, Waymouth RM (1995) Science 267:217–219CrossRefGoogle Scholar
  10. 10.
    Giradello MA, Marks TJ, Eisen MS, Stern CL (1995) J Am Chem Soc 117:12114–12129CrossRefGoogle Scholar
  11. 11.
    Kaminsky W, Engehausen R, Köpf J (1995) Angew Chem Int Ed Engl 34:2273–2275CrossRefGoogle Scholar
  12. 12.
    Chen EYX, Marks TJ (2000) Chem Rev 100:1391–1434CrossRefGoogle Scholar
  13. 13.
    Straus DA, Zhang C, Tilley TD (1989) J Organomet Chem 369:C13–C17CrossRefGoogle Scholar
  14. 14.
    Chien JC, Tsai WM, Rausch MD (1991) J Am Chem Soc 113:8570–8571CrossRefGoogle Scholar
  15. 15.
    Turner HW (1988) Eur Pat Appl. EP 0 277 004 A1 (Exxon Chemical)Google Scholar
  16. 16.
    Hlatky GG, Upton DJ, Turner HW (1991), PCT Int Appl. WO 91/09882 (Exxon Chemical)Google Scholar
  17. 17.
    Chen YX, Stern CL, Yang ST, Marks TJ (1996) J Am Chem Soc 118:12451–12452CrossRefGoogle Scholar
  18. 18.
    Chen YX, Stern CL, Marks TJ (1997) J Am Chem Soc 119:2582–2583CrossRefGoogle Scholar
  19. 19.
    Chen YX, Metz MV, Li LT, Stern CL, Marks TJ (1998) J Am Chem Soc 120:6287–6305CrossRefGoogle Scholar
  20. 20.
    Chien JC, Song W, Rausch MD (1994) J Polym Sci A Polym Chem 32:2387–2393CrossRefGoogle Scholar
  21. 21.
    Deck PA, Beswick CL, Marks TJ (1998) J Am Chem Soc 120:1772–1784CrossRefGoogle Scholar
  22. 22.
    Bochmann M (2004) J Organomet Chem 689:3982–3998CrossRefGoogle Scholar
  23. 23.
    Hlatky GG (2000) Chem Rev 100:1347–1376CrossRefGoogle Scholar
  24. 24.
    Beaufort L, Benvenuti F, Noels AF (2006) J Mol Catal A Chem 260:215–220CrossRefGoogle Scholar
  25. 25.
    Kantam ML, Ghosh S, Aziz K, Sreedhar B, Choudary BM (2005) J Mol Catal A Chem 240:103–108Google Scholar
  26. 26.
    Tomostu N, Ishihata N, Newman TH, Malanga MT (1998) J Mol Catal A Chem 128:167–190CrossRefGoogle Scholar
  27. 27.
    Pó R, Cardi N (1996) Prog Polym Sci 21:47–88CrossRefGoogle Scholar
  28. 28.
    Lin S, Tagge CD, Waymouth RM, Nele M, Collins S, Pinto JC (2000) J Am Chem Soc 122:11275–11285CrossRefGoogle Scholar
  29. 29.
    Hauptman E, Waymouth RM, Ziller JW (1995) J Am Chem Soc 117:11586–11587CrossRefGoogle Scholar
  30. 30.
    Bruce MD, Coates GW, Hauptman E, Waymouth RM, Ziller JW (1997) J Am Chem Soc 119:11174–11182CrossRefGoogle Scholar
  31. 31.
    Wilmes GM, Lin S, Waymouth RM (2002) Macromolecules 35:5382–5387CrossRefGoogle Scholar
  32. 32.
    Liu Z, Somsook E, Landis CR (2001) J Am Chem Soc 123:2915–2916CrossRefGoogle Scholar
  33. 33.
    Liu Z, Somsook E, White CB, Rosaaen KA, Landis CR (2001) J Am Chem Soc 123:11193–11207CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Inorganic & Physical Chemistry DivisionIndian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations