Journal of Polymer Research

, Volume 15, Issue 5, pp 413–420 | Cite as

Melting behavior and isothermal crystallization kinetics of PP/mLLDPE blends



The melting/crystallization behavior and isothermal crystallization kinetics of polypropylene (PP)/metallocene-catalyzed linear low density polyethylene (mLLDPE) blends were studied with differential scanning calorimetry (DSC). The results showed that PP and mLLDPE are partially miscible and interactions mainly exist between the mLLDPE chains and the PE segments in PP molecules. The isothermal crystallization kinetics of the blends was described with the Avrami equation. Values of the Avrami exponent indicated that crystallization nucleation of the blends is heterogeneous, the growth of spherulites is almost three-dimensional, and the crystallization mechanism of PP is not affected much by mLLDPE. The Avrami exponents of the blends are higher than that of pure PP, showing that the mLLDPE helps PP to form perfect spherulites. The crystallization rates of PP are decreased by mLLDPE because the crystallization temperature of PP was decreased by addition of mLLDPE and consequently the supercooling of the PP was correspondingly lower. The crystallization activation energy was estimated by the Friedman equation, and the result showed that the activation energy increased by a small degree by addition of mLLDPE, but changed little with increasing content of mLLDPE in the blends. The nucleation constant (K g) was determined by the Hoffman–Lauritzen theory.


Polypropylene (PP) Metallocene-catalyzed linear low density polyethylene (mLLDPE) Melting behavior Isothermal crystallization kinetics Activation energy 


  1. 1.
    Karger-Kocsis J, Kalló A, Kuleznev VN (1984) Polymer 25:279CrossRefGoogle Scholar
  2. 2.
    CoPPola F, Greco R, Martuscelli E, Kammer HW (1987) Polymer 28:47CrossRefGoogle Scholar
  3. 3.
    Tam WY, Cheung T, Li RKY (1996) Polym Test 15:452CrossRefGoogle Scholar
  4. 4.
    Van der Wal A, Mulder JJ, Oderkerk J, Gaymans R (1998) Polymer 39:6781CrossRefGoogle Scholar
  5. 5.
    Yokoma Y, Ricco T (1997) J Appl Polym Sci 66:1007CrossRefGoogle Scholar
  6. 6.
    Bai S, G’Sell C, Hiver J-M (2005) Polymer 46:6437CrossRefGoogle Scholar
  7. 7.
    Karger-Kocsis J (1994) Polypropylene-structure, blends and composites. Chapman & Hall, LondonGoogle Scholar
  8. 8.
    Qiu GX, Raue F, Ehrenstein GW (2002) J Appl Polym Sci 83:3029CrossRefGoogle Scholar
  9. 9.
    Ou C-F (2002) J Eur Polym J 38:467CrossRefGoogle Scholar
  10. 10.
    Qin J, Gao J (2004) China Plastics 4:21Google Scholar
  11. 11.
    Shieh YT, Lee MS, Chen SA (2001) Polymer 42:4439CrossRefGoogle Scholar
  12. 12.
    Ha CS, Kim SC (1988) J Appl Polym Sci 35:2211CrossRefGoogle Scholar
  13. 13.
    Avrami M (1939) J Chem Phys 7:1103CrossRefGoogle Scholar
  14. 14.
    Avrami M (1940) J Chem Phys 8:212CrossRefGoogle Scholar
  15. 15.
    LU XL, Hay JN (2001) Polymer 42:9423CrossRefGoogle Scholar
  16. 16.
    Li J, Zhou C, Gang W (2002) Polym Test 21:583CrossRefGoogle Scholar
  17. 17.
    Run M, Yao C, Wang Y (2006) EurPolym J 42:655CrossRefGoogle Scholar
  18. 18.
    Ozawa T (1971) Polymer 12:150CrossRefGoogle Scholar
  19. 19.
    Ozawa T (1978) Polymer 19:1142CrossRefGoogle Scholar
  20. 20.
    Herrero CH, Acosta JL (1994) Polymer 26:786CrossRefGoogle Scholar
  21. 21.
    De Juana R, Jauregui A, Calahora E, Cortazar M (1996) Polymer 37:3339CrossRefGoogle Scholar
  22. 22.
    Lee SW, Ree M, Park CE, Jung YK, Park CS et al (1999) Polymer 40:7137CrossRefGoogle Scholar
  23. 23.
    Seo YS, Kim JH, Kin KU, Kim YC (2000) Polymer 41:2639CrossRefGoogle Scholar
  24. 24.
    Shultz J (1974) Polymeric materials science. Prentice-Hall, New YorkGoogle Scholar
  25. 25.
    Xu G, Shi W, Hu P (2005) Eur Polym J 41:1828CrossRefGoogle Scholar
  26. 26.
    Li J, Zhou C, Wang G, Tao Y (2002) Polym Test 21:583CrossRefGoogle Scholar
  27. 27.
    Zhang X, Xie T, Yang G (2006) Polymer 47:2116CrossRefGoogle Scholar
  28. 28.
    Kirshenbaum I, Wilchinsky ZW, Groten B (1964) J Appl Polym Sci 8:2723CrossRefGoogle Scholar
  29. 29.
    Friedman H (1964–1965) J Polym Sci C6:183Google Scholar
  30. 30.
    Vyazovkin S (1997) J Comput Chem 18:393CrossRefGoogle Scholar
  31. 31.
    Vyazovkin S (2001) J Comput Chem 22:178CrossRefGoogle Scholar
  32. 32.
    Hoffman JD, Davis GT, Lauritzen JJ (1976) In: Hannay NB (ed) Treatise on solid state chemistry, vol 3. Plenum, New YorkGoogle Scholar
  33. 33.
    Chan TW, Isayev AI (1994) Polym Eng Sci 34:461CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.College of Chemistry and Environmental ScienceHebei UniversityBaodingChina

Personalised recommendations