Skip to main content
Log in

Melting behavior and isothermal crystallization kinetics of PP/mLLDPE blends

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The melting/crystallization behavior and isothermal crystallization kinetics of polypropylene (PP)/metallocene-catalyzed linear low density polyethylene (mLLDPE) blends were studied with differential scanning calorimetry (DSC). The results showed that PP and mLLDPE are partially miscible and interactions mainly exist between the mLLDPE chains and the PE segments in PP molecules. The isothermal crystallization kinetics of the blends was described with the Avrami equation. Values of the Avrami exponent indicated that crystallization nucleation of the blends is heterogeneous, the growth of spherulites is almost three-dimensional, and the crystallization mechanism of PP is not affected much by mLLDPE. The Avrami exponents of the blends are higher than that of pure PP, showing that the mLLDPE helps PP to form perfect spherulites. The crystallization rates of PP are decreased by mLLDPE because the crystallization temperature of PP was decreased by addition of mLLDPE and consequently the supercooling of the PP was correspondingly lower. The crystallization activation energy was estimated by the Friedman equation, and the result showed that the activation energy increased by a small degree by addition of mLLDPE, but changed little with increasing content of mLLDPE in the blends. The nucleation constant (K g) was determined by the Hoffman–Lauritzen theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Karger-Kocsis J, Kalló A, Kuleznev VN (1984) Polymer 25:279

    Article  CAS  Google Scholar 

  2. CoPPola F, Greco R, Martuscelli E, Kammer HW (1987) Polymer 28:47

    Article  CAS  Google Scholar 

  3. Tam WY, Cheung T, Li RKY (1996) Polym Test 15:452

    Article  Google Scholar 

  4. Van der Wal A, Mulder JJ, Oderkerk J, Gaymans R (1998) Polymer 39:6781

    Article  Google Scholar 

  5. Yokoma Y, Ricco T (1997) J Appl Polym Sci 66:1007

    Article  Google Scholar 

  6. Bai S, G’Sell C, Hiver J-M (2005) Polymer 46:6437

    Article  CAS  Google Scholar 

  7. Karger-Kocsis J (1994) Polypropylene-structure, blends and composites. Chapman & Hall, London

    Google Scholar 

  8. Qiu GX, Raue F, Ehrenstein GW (2002) J Appl Polym Sci 83:3029

    Article  CAS  Google Scholar 

  9. Ou C-F (2002) J Eur Polym J 38:467

    Article  CAS  Google Scholar 

  10. Qin J, Gao J (2004) China Plastics 4:21

    Google Scholar 

  11. Shieh YT, Lee MS, Chen SA (2001) Polymer 42:4439

    Article  CAS  Google Scholar 

  12. Ha CS, Kim SC (1988) J Appl Polym Sci 35:2211

    Article  CAS  Google Scholar 

  13. Avrami M (1939) J Chem Phys 7:1103

    Article  CAS  Google Scholar 

  14. Avrami M (1940) J Chem Phys 8:212

    Article  CAS  Google Scholar 

  15. LU XL, Hay JN (2001) Polymer 42:9423

    Article  CAS  Google Scholar 

  16. Li J, Zhou C, Gang W (2002) Polym Test 21:583

    Article  CAS  Google Scholar 

  17. Run M, Yao C, Wang Y (2006) EurPolym J 42:655

    Article  CAS  Google Scholar 

  18. Ozawa T (1971) Polymer 12:150

    Article  CAS  Google Scholar 

  19. Ozawa T (1978) Polymer 19:1142

    Article  Google Scholar 

  20. Herrero CH, Acosta JL (1994) Polymer 26:786

    Article  CAS  Google Scholar 

  21. De Juana R, Jauregui A, Calahora E, Cortazar M (1996) Polymer 37:3339

    Article  Google Scholar 

  22. Lee SW, Ree M, Park CE, Jung YK, Park CS et al (1999) Polymer 40:7137

    Article  CAS  Google Scholar 

  23. Seo YS, Kim JH, Kin KU, Kim YC (2000) Polymer 41:2639

    Article  CAS  Google Scholar 

  24. Shultz J (1974) Polymeric materials science. Prentice-Hall, New York

    Google Scholar 

  25. Xu G, Shi W, Hu P (2005) Eur Polym J 41:1828

    Article  CAS  Google Scholar 

  26. Li J, Zhou C, Wang G, Tao Y (2002) Polym Test 21:583

    Article  CAS  Google Scholar 

  27. Zhang X, Xie T, Yang G (2006) Polymer 47:2116

    Article  CAS  Google Scholar 

  28. Kirshenbaum I, Wilchinsky ZW, Groten B (1964) J Appl Polym Sci 8:2723

    Article  CAS  Google Scholar 

  29. Friedman H (1964–1965) J Polym Sci C6:183

    Google Scholar 

  30. Vyazovkin S (1997) J Comput Chem 18:393

    Article  CAS  Google Scholar 

  31. Vyazovkin S (2001) J Comput Chem 22:178

    Article  CAS  Google Scholar 

  32. Hoffman JD, Davis GT, Lauritzen JJ (1976) In: Hannay NB (ed) Treatise on solid state chemistry, vol 3. Plenum, New York

    Google Scholar 

  33. Chan TW, Isayev AI (1994) Polym Eng Sci 34:461

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianglei Qin.

Additional information

Supported by the Science Foundation of Hebei University (2006Q13).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, J., Guo, S. & Li, Z. Melting behavior and isothermal crystallization kinetics of PP/mLLDPE blends. J Polym Res 15, 413–420 (2008). https://doi.org/10.1007/s10965-008-9186-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-008-9186-2

Keywords

Navigation