Skip to main content
Log in

Study of macroinitiator efficiency and microstructure–thermal properties in the atom transfer radical polymerization of methyl methacrylate

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) with poly vinylacetate macroinitiator (PVAc-CCl3) and CuCl/PMDETA as catalyst was successfully carried out in bulk and solution. The apparent propagation rate constant (\(k_{\text{p}}^{{\text{app}}} \)) and concentration of active species ([P°]) were higher in the bulk. In solution they increased with polarity of solvent. Two different molecular weights of macroinitiators were used in ATRP of MMA. The linear relation of Ln[M]0/[M] versus time was only confirmed for the low molecular weight macroinitiator. The ratio of \({{k_{\text{t}} } \mathord{\left/ {\vphantom {{k_{\text{t}} } {K_{{\text{eq}}} }}} \right. \kern-\nulldelimiterspace} {K_{{\text{eq}}} }} = 1.31 \times 10^{13} \;{\text{M}}^{ - 1} \,{\text{s}}^{ - 1} \) was calculated in the bulk reaction with the low molecular weight macroinitiator, this ratio was 1.77 × 1014 M−1 s−1 for larger macroinitiator in solution. The MWD of block copolymers were sharper with lower molecular weight macroinitiator in the solution, but it appeared broader in the bulk polymerization. Our results indicated that smaller molecular weight macroinitiator was more efficient and formed a block copolymer with lower PDI. Thermal analysis and microstructure of the block copolymers are investigated by 1H NMR, FT-IR, TGA and DSC. The chain tacticity of the MMA units is found not to be sensitive to the kinetic of the reactions with two different molecular weights of macroinitiator. DSC measurement shows two different transitions at 39 and 108 °C assigned to PVAc and PMMA blocks. The TGA profile shows a three-step degradation. The initial small weight loss that occurs around 220 °C and two large weight loss around 238 and 310 °C are attributed to dechlorination step and decomposition of the PMMA and PVAc blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Braunecker WA, Matyjaszewski K (2007) Prog Polym Sci 32:93

    Article  CAS  Google Scholar 

  2. Matyjaszewski K (2005) Prog Polym Sci 30:858

    Article  CAS  Google Scholar 

  3. Frechet JMJ (2005) Prog Polym Sci 30:844

    Article  CAS  Google Scholar 

  4. Chatterjee DP, Mandal BM (2006) Polymer 47:1812

    Article  CAS  Google Scholar 

  5. Ramakrishnan A, Dhamodharan R (2003) Macromolecules 36:1039

    Article  CAS  Google Scholar 

  6. Wang TL, Liu YZ, Jeng BC, Cai YC (2005) J Polym Res 12:67

    Article  Google Scholar 

  7. Semsarzadeh MA, Rostami Daronkola MR (2006) Iran Polym Jnl 15:829

    CAS  Google Scholar 

  8. Huang CF, Kuo SW, Chen JK, Chang FC (2005) J Polym Res 12:449

    Article  CAS  Google Scholar 

  9. Matyjaszewski K, Xia J (2001) Chem Rev 101:2921

    Article  CAS  Google Scholar 

  10. Xu W, Zhu X, Cheng Z, Chen J (2003) J Appl Polym Sci 90:1117

    Article  CAS  Google Scholar 

  11. De La Fuente JL, Fernandez-Sanz M, Fernandez-García M, Madruga EL (2001) Macromol Chem Phys 202:1415

    Google Scholar 

  12. Wootthikanokkhan J, Peesan M, Phinyocheep P (2001) Euro Polym Jnl 37:2063

    Article  CAS  Google Scholar 

  13. Destarac M, Pees B, Boutevin B (2000) Macromol Chem Phys 201:1189

    Article  CAS  Google Scholar 

  14. Semsarzadeh MA, Mirzaei A, Vasheghani-Farahani E, Nekoomanesh Haghighi M (2003) Euro Polym Jnl 39:2193

    Article  CAS  Google Scholar 

  15. Li H, Zhang YM, Liu YG (2006) J Apply Polym Sci 101:1089

    Article  CAS  Google Scholar 

  16. Fernandez-García M, De La Fuente JL, Fernandez-Sanz M, Madruga EL (2001) Polymer 42:9405

    Article  Google Scholar 

  17. Huang J, Pintauer T, Matyjaszewski K (2004) J Polym Sci Part A: Polym Chem 42:3285

    Article  CAS  Google Scholar 

  18. Zhang H, Van Deer Linde R (2002) J Polym Sci Part A: Polym Chem 40:3549

    Article  CAS  Google Scholar 

  19. Muñoz-Bonilla A, López Madruga E, Fernández-García M (2005) J Polym Sci Part A: Polym Chem 43:71

    Article  Google Scholar 

  20. Matyjaszewski K, Patten TE, Xia J (1997) J Am Chem Soc 119:674

    Article  CAS  Google Scholar 

  21. Fischer H (1999) J Polym Sci Part A: Polym Chem 37:1885

    Article  CAS  Google Scholar 

  22. Zhang H, Klumperman B, Ming W, Fischer H, van der Linde R (2001) Macromolecules 34:6169

    Article  CAS  Google Scholar 

  23. Shipp DA, Yu X (2004) J Polym Sci Part A: Polym Chem 42:5548

    Article  CAS  Google Scholar 

  24. Zhu C, Sun F, Zhang M, Jin J (2004) Polymer 45:1141

    Article  CAS  Google Scholar 

  25. Semsarzadeh MA, Rostami Daronkola MR, Abdollahi M (2007) J Macromol Sci Part A: Pure and Appl Chem 44:953

    Article  CAS  Google Scholar 

  26. Pintauer T, Zhou P, Matyjaszewski K (2002) J Am Chem Soc 124:8196

    Article  CAS  Google Scholar 

  27. Theis A, Davis TP, Stenzel MH, Barner-Kowollik C (2005) Macromolecules 38:10323

    Article  CAS  Google Scholar 

  28. Colby RH, Fetters LJ, Graessley WW (1987) 20:2226

  29. Ball RC, McLeish TCB (1989) Macromolecules 22:1911

    Article  CAS  Google Scholar 

  30. Raghunadh V, Baskaran D, Sivaram S (2004) Polymer 45:3149

    Article  CAS  Google Scholar 

  31. Isobel Y, Nakano T, Okamoto Y (2001) J Polym Sci Part A: Polym Chem 39:1463

    Article  Google Scholar 

  32. Brar AS, Kaur S (2005) J Polym Sci Part A: Polym Chem 43:1100

    Article  CAS  Google Scholar 

  33. Salehi-Mobarakeh H, Hassannia-Roudboneh M (2006) J Polym Res 13:421

    Article  CAS  Google Scholar 

  34. Petrocelli FP, Cordeiro CF (2000) Macromol Symp 155:39

    Article  CAS  Google Scholar 

  35. Tong JD, Moineau G, Ph Leclère JL, Lazzaroni BR, Jérôme R (2000) Macromolecules 33:470

    Article  CAS  Google Scholar 

  36. Sivalingam G, Karthik R, Madras G (2003) Ind Eng Chem Res 42:3647

    Article  CAS  Google Scholar 

  37. Das P, Saikia CN, Dass NN (2004) J Apply Polym Sci 92:3471

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors extend their greatest appreciation to Ms. S. Fathollahi for GPC measurements, Ms. A. Nouri for 1H NMR measurements, Ms. F. Askari for FTIR measurement and Mr. H. Asghari for thermal analysis measurement from Iran Polymer and Petrochemical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Rostami Daronkola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rostami Daronkola, M.R., Semsarzadeh, M.A. Study of macroinitiator efficiency and microstructure–thermal properties in the atom transfer radical polymerization of methyl methacrylate. J Polym Res 15, 403–411 (2008). https://doi.org/10.1007/s10965-008-9185-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-008-9185-3

Keywords

Navigation