Journal of Polymer Research

, Volume 15, Issue 5, pp 403–411 | Cite as

Study of macroinitiator efficiency and microstructure–thermal properties in the atom transfer radical polymerization of methyl methacrylate

  • Mohammad Reza Rostami Daronkola
  • Mohammad Ali Semsarzadeh


The atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) with poly vinylacetate macroinitiator (PVAc-CCl3) and CuCl/PMDETA as catalyst was successfully carried out in bulk and solution. The apparent propagation rate constant (\(k_{\text{p}}^{{\text{app}}} \)) and concentration of active species ([P°]) were higher in the bulk. In solution they increased with polarity of solvent. Two different molecular weights of macroinitiators were used in ATRP of MMA. The linear relation of Ln[M]0/[M] versus time was only confirmed for the low molecular weight macroinitiator. The ratio of \({{k_{\text{t}} } \mathord{\left/ {\vphantom {{k_{\text{t}} } {K_{{\text{eq}}} }}} \right. \kern-\nulldelimiterspace} {K_{{\text{eq}}} }} = 1.31 \times 10^{13} \;{\text{M}}^{ - 1} \,{\text{s}}^{ - 1} \) was calculated in the bulk reaction with the low molecular weight macroinitiator, this ratio was 1.77 × 1014 M−1 s−1 for larger macroinitiator in solution. The MWD of block copolymers were sharper with lower molecular weight macroinitiator in the solution, but it appeared broader in the bulk polymerization. Our results indicated that smaller molecular weight macroinitiator was more efficient and formed a block copolymer with lower PDI. Thermal analysis and microstructure of the block copolymers are investigated by 1H NMR, FT-IR, TGA and DSC. The chain tacticity of the MMA units is found not to be sensitive to the kinetic of the reactions with two different molecular weights of macroinitiator. DSC measurement shows two different transitions at 39 and 108 °C assigned to PVAc and PMMA blocks. The TGA profile shows a three-step degradation. The initial small weight loss that occurs around 220 °C and two large weight loss around 238 and 310 °C are attributed to dechlorination step and decomposition of the PMMA and PVAc blocks.


Atom transfer radical polymerization (ATRP) Macroinitiator efficiency Methyl methacrylate Microstructure Thermal properties 



The authors extend their greatest appreciation to Ms. S. Fathollahi for GPC measurements, Ms. A. Nouri for 1H NMR measurements, Ms. F. Askari for FTIR measurement and Mr. H. Asghari for thermal analysis measurement from Iran Polymer and Petrochemical Institute.


  1. 1.
    Braunecker WA, Matyjaszewski K (2007) Prog Polym Sci 32:93CrossRefGoogle Scholar
  2. 2.
    Matyjaszewski K (2005) Prog Polym Sci 30:858CrossRefGoogle Scholar
  3. 3.
    Frechet JMJ (2005) Prog Polym Sci 30:844CrossRefGoogle Scholar
  4. 4.
    Chatterjee DP, Mandal BM (2006) Polymer 47:1812CrossRefGoogle Scholar
  5. 5.
    Ramakrishnan A, Dhamodharan R (2003) Macromolecules 36:1039CrossRefGoogle Scholar
  6. 6.
    Wang TL, Liu YZ, Jeng BC, Cai YC (2005) J Polym Res 12:67CrossRefGoogle Scholar
  7. 7.
    Semsarzadeh MA, Rostami Daronkola MR (2006) Iran Polym Jnl 15:829Google Scholar
  8. 8.
    Huang CF, Kuo SW, Chen JK, Chang FC (2005) J Polym Res 12:449CrossRefGoogle Scholar
  9. 9.
    Matyjaszewski K, Xia J (2001) Chem Rev 101:2921CrossRefGoogle Scholar
  10. 10.
    Xu W, Zhu X, Cheng Z, Chen J (2003) J Appl Polym Sci 90:1117CrossRefGoogle Scholar
  11. 11.
    De La Fuente JL, Fernandez-Sanz M, Fernandez-García M, Madruga EL (2001) Macromol Chem Phys 202:1415Google Scholar
  12. 12.
    Wootthikanokkhan J, Peesan M, Phinyocheep P (2001) Euro Polym Jnl 37:2063CrossRefGoogle Scholar
  13. 13.
    Destarac M, Pees B, Boutevin B (2000) Macromol Chem Phys 201:1189CrossRefGoogle Scholar
  14. 14.
    Semsarzadeh MA, Mirzaei A, Vasheghani-Farahani E, Nekoomanesh Haghighi M (2003) Euro Polym Jnl 39:2193CrossRefGoogle Scholar
  15. 15.
    Li H, Zhang YM, Liu YG (2006) J Apply Polym Sci 101:1089CrossRefGoogle Scholar
  16. 16.
    Fernandez-García M, De La Fuente JL, Fernandez-Sanz M, Madruga EL (2001) Polymer 42:9405CrossRefGoogle Scholar
  17. 17.
    Huang J, Pintauer T, Matyjaszewski K (2004) J Polym Sci Part A: Polym Chem 42:3285CrossRefGoogle Scholar
  18. 18.
    Zhang H, Van Deer Linde R (2002) J Polym Sci Part A: Polym Chem 40:3549CrossRefGoogle Scholar
  19. 19.
    Muñoz-Bonilla A, López Madruga E, Fernández-García M (2005) J Polym Sci Part A: Polym Chem 43:71CrossRefGoogle Scholar
  20. 20.
    Matyjaszewski K, Patten TE, Xia J (1997) J Am Chem Soc 119:674CrossRefGoogle Scholar
  21. 21.
    Fischer H (1999) J Polym Sci Part A: Polym Chem 37:1885CrossRefGoogle Scholar
  22. 22.
    Zhang H, Klumperman B, Ming W, Fischer H, van der Linde R (2001) Macromolecules 34:6169CrossRefGoogle Scholar
  23. 23.
    Shipp DA, Yu X (2004) J Polym Sci Part A: Polym Chem 42:5548CrossRefGoogle Scholar
  24. 24.
    Zhu C, Sun F, Zhang M, Jin J (2004) Polymer 45:1141CrossRefGoogle Scholar
  25. 25.
    Semsarzadeh MA, Rostami Daronkola MR, Abdollahi M (2007) J Macromol Sci Part A: Pure and Appl Chem 44:953CrossRefGoogle Scholar
  26. 26.
    Pintauer T, Zhou P, Matyjaszewski K (2002) J Am Chem Soc 124:8196CrossRefGoogle Scholar
  27. 27.
    Theis A, Davis TP, Stenzel MH, Barner-Kowollik C (2005) Macromolecules 38:10323CrossRefGoogle Scholar
  28. 28.
    Colby RH, Fetters LJ, Graessley WW (1987) 20:2226Google Scholar
  29. 29.
    Ball RC, McLeish TCB (1989) Macromolecules 22:1911CrossRefGoogle Scholar
  30. 30.
    Raghunadh V, Baskaran D, Sivaram S (2004) Polymer 45:3149CrossRefGoogle Scholar
  31. 31.
    Isobel Y, Nakano T, Okamoto Y (2001) J Polym Sci Part A: Polym Chem 39:1463CrossRefGoogle Scholar
  32. 32.
    Brar AS, Kaur S (2005) J Polym Sci Part A: Polym Chem 43:1100CrossRefGoogle Scholar
  33. 33.
    Salehi-Mobarakeh H, Hassannia-Roudboneh M (2006) J Polym Res 13:421CrossRefGoogle Scholar
  34. 34.
    Petrocelli FP, Cordeiro CF (2000) Macromol Symp 155:39CrossRefGoogle Scholar
  35. 35.
    Tong JD, Moineau G, Ph Leclère JL, Lazzaroni BR, Jérôme R (2000) Macromolecules 33:470CrossRefGoogle Scholar
  36. 36.
    Sivalingam G, Karthik R, Madras G (2003) Ind Eng Chem Res 42:3647CrossRefGoogle Scholar
  37. 37.
    Das P, Saikia CN, Dass NN (2004) J Apply Polym Sci 92:3471CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Mohammad Reza Rostami Daronkola
    • 1
  • Mohammad Ali Semsarzadeh
    • 1
  1. 1.Polymer Group, Chemical Engineering DepartmentTarbiat Modares UniversityTehranI.R., Iran

Personalised recommendations