Skip to main content
Log in

Effect of Nano CaCO3 on thermal properties of Styrene Butadiene Rubber (SBR)

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Styrene butadiene rubber (SBR) as matrix was reinforced separately with 9, 15 and 21 nm sizes of CaCO3, which were synthesized by matrix mediated growth technique. The mixing and compounding was done on two-roll mill and sheets were prepared in compression molding machine. The effect of nature and loading of nano CaCO3 on these rubber nanocomposites was investigated thoroughly by different characterizations such as DSC, TGA, XRD, and mechanical properties. An appreciable increase in glass transition temperature has been observed from DSC study. 9 nm sizes of CaCO3/SBR composites show more increment in Tg as compared to pristine SBR as well as different sizes of CaCO3 filled SBR. This increment in Tg is due to restricted mobility of nano CaCO3 filled SBR nanocomposites. XRD study of nanocomposites showed that nano CaCO3 dispersed uniformly throughout the matrix because of the small peak at lower 2θ. This uniform dispersion of nano CaCO3 contributes towards the higher mechanical properties of rubber composites. From TGA study, it was observed that as the size of CaCO3 reduces the thermal stability increases as compared to pristine SBR. The other results of these rubber nanocomposites were compared with commercial CaCO3 filled SBR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Giannelis EP (1996) Adv Mater 8:29

    Article  CAS  Google Scholar 

  2. Chen T, Tien Y, Wei K (2000) Polymer 42:1345

    Article  Google Scholar 

  3. Usuki A, Tukigase A, Kato M (2002) Polymer 43:2185

    Article  CAS  Google Scholar 

  4. Fu X, Qutubuddin S (2001) Polymer 42:807

    Article  CAS  Google Scholar 

  5. Zhang W, Chen D, Zhao Q, Fang Y (2003) Polymer 44:7953

    Article  CAS  Google Scholar 

  6. Chang J, An Y (2002) J Polym Sci, Part B, Polym Phys 40:670

    Article  CAS  Google Scholar 

  7. Chang J, An Y, Sur G (2003) J Polym Sci, Part B, Polym Phys 41:94

    Article  CAS  Google Scholar 

  8. Liu Y, Wu C, Chiu Y, Ho W (2003) J Polym Sci, Part A, Polym Chem 41:2354

    Article  CAS  Google Scholar 

  9. Mishra S, Sonawane SH, Singh RP, Bendale A, Patil K (2004) J Appl Polym Sci 94:116

    Article  CAS  Google Scholar 

  10. Mishra S, Sonawane SH, Singh RP (2005) J Polym Sci, Part B: Polym Phys 43(1):107

    Article  CAS  Google Scholar 

  11. Lan T, Kaviratna PD, Pinnavaia TJ (1995) Chem Mater 7:2144

    Article  CAS  Google Scholar 

  12. Yoon JT, Jo WH, Lee MS, Ko MB (2001) Polymer 42:329

    Article  CAS  Google Scholar 

  13. Kader MA, Nah C (2004) Polymer 45:2237

    Article  CAS  Google Scholar 

  14. Arroyo M, Lopez-Manchado MA, Herrero B (2003) Polymer 44:2447

    Article  CAS  Google Scholar 

  15. Brown MJ, Curliss D, Vaia RA (2000) Chem Mater 12:3376

    Article  CAS  Google Scholar 

  16. Tjong SC, Meng YZ, Hay AS (2002) Chem Mater 14:44 494

    Article  CAS  Google Scholar 

  17. Fornes TD, Hunter DL, Paul DR (2004) Macromolecules 37:1793

    Article  CAS  Google Scholar 

  18. Choi YS, Ham HT, Chung IJ (2004) Chem Mater 16:2522 496

    Article  CAS  Google Scholar 

  19. Zhang H, Wang Y, Wu Y, Zhang L, Yang J (2005) J Appl Polym Sci 97:844

    Article  CAS  Google Scholar 

  20. Chan CM, Wu JS, Li JX, Cheung YK (2002) Polymer 43:2981–2992

    Article  CAS  Google Scholar 

  21. Gopinath CS, Hedge SG, Ramaswamy AV, Mahapatra S (2002) Mater Res Bull 37:1323

    Article  CAS  Google Scholar 

  22. Mishra S, Shimpi NG (2005) J Sci Ind Res 41:744

    Google Scholar 

  23. Mishra S, Shimpi NG (2005) J Appl Polym Sci 98:2563

    Article  CAS  Google Scholar 

  24. Pathak A, Panda AB, Tarafdar A, Pramanik P (2003) J Indian Chem Soc 80:289 510

    CAS  Google Scholar 

  25. Mishra S, Sonawane SH, Badgujar N, Gurav K, Patil D (2005) J Appl Polym Sci 96:6 512

    Article  CAS  Google Scholar 

  26. Manchando MA, Herrero B, Arroyo M (2003) Polym Int 52:1070

    Article  Google Scholar 

  27. Usuki A, Koiwai A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurachi T, Kamigaito O (1993) J Mater Res 8(5):1179

    Google Scholar 

  28. Kim JT, Oh T-S, Lee D-H (2003) Polym Int 52:1058

    Article  CAS  Google Scholar 

  29. Chang Y-W, Yang Y, Ryu S, Nah C (2002) Polym Int 51:319

    Article  CAS  Google Scholar 

  30. Flory PJ (1953) In: Principles of polymer chemistry. Cornell University. Ithaca, New York 519

    Google Scholar 

  31. Chang YW, Yang Y, Ryu S, Nah C (2002) Polym Int 51:319

    Article  CAS  Google Scholar 

  32. Chen G, Lin S, Chen S, Qi Z (2001) Macromol Chem Phys 202:1189

    Article  CAS  Google Scholar 

  33. Fujiwara S, Sakamato T (1976) Kokai Patent SHO 51, 109998

  34. Gilman JW (1999) App Clay Sci 15:31

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors are thankful to Council of Scientific and Industrial Research, New Delhi (CSIR) for financial assistance to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mishra.

Additional information

Partly this research paper has been presented in International conference on ‘RubberChem 2006, Dec 5–6, 2006, Munich, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, S., Shimpi, N.G. & Patil, U.D. Effect of Nano CaCO3 on thermal properties of Styrene Butadiene Rubber (SBR). J Polym Res 14, 449–459 (2007). https://doi.org/10.1007/s10965-007-9127-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-007-9127-5

Keywords

Navigation