Journal of Polymer Research

, Volume 14, Issue 6, pp 449–459 | Cite as

Effect of Nano CaCO3 on thermal properties of Styrene Butadiene Rubber (SBR)



Styrene butadiene rubber (SBR) as matrix was reinforced separately with 9, 15 and 21 nm sizes of CaCO3, which were synthesized by matrix mediated growth technique. The mixing and compounding was done on two-roll mill and sheets were prepared in compression molding machine. The effect of nature and loading of nano CaCO3 on these rubber nanocomposites was investigated thoroughly by different characterizations such as DSC, TGA, XRD, and mechanical properties. An appreciable increase in glass transition temperature has been observed from DSC study. 9 nm sizes of CaCO3/SBR composites show more increment in Tg as compared to pristine SBR as well as different sizes of CaCO3 filled SBR. This increment in Tg is due to restricted mobility of nano CaCO3 filled SBR nanocomposites. XRD study of nanocomposites showed that nano CaCO3 dispersed uniformly throughout the matrix because of the small peak at lower 2θ. This uniform dispersion of nano CaCO3 contributes towards the higher mechanical properties of rubber composites. From TGA study, it was observed that as the size of CaCO3 reduces the thermal stability increases as compared to pristine SBR. The other results of these rubber nanocomposites were compared with commercial CaCO3 filled SBR.


Nanocomposites Nano CaCO3 Glass transition temperature (Tg) Thermal parameters X-ray diffraction 



Authors are thankful to Council of Scientific and Industrial Research, New Delhi (CSIR) for financial assistance to carry out this research work.


  1. 1.
    Giannelis EP (1996) Adv Mater 8:29CrossRefGoogle Scholar
  2. 2.
    Chen T, Tien Y, Wei K (2000) Polymer 42:1345CrossRefGoogle Scholar
  3. 3.
    Usuki A, Tukigase A, Kato M (2002) Polymer 43:2185CrossRefGoogle Scholar
  4. 4.
    Fu X, Qutubuddin S (2001) Polymer 42:807CrossRefGoogle Scholar
  5. 5.
    Zhang W, Chen D, Zhao Q, Fang Y (2003) Polymer 44:7953CrossRefGoogle Scholar
  6. 6.
    Chang J, An Y (2002) J Polym Sci, Part B, Polym Phys 40:670CrossRefGoogle Scholar
  7. 7.
    Chang J, An Y, Sur G (2003) J Polym Sci, Part B, Polym Phys 41:94CrossRefGoogle Scholar
  8. 8.
    Liu Y, Wu C, Chiu Y, Ho W (2003) J Polym Sci, Part A, Polym Chem 41:2354CrossRefGoogle Scholar
  9. 9.
    Mishra S, Sonawane SH, Singh RP, Bendale A, Patil K (2004) J Appl Polym Sci 94:116CrossRefGoogle Scholar
  10. 10.
    Mishra S, Sonawane SH, Singh RP (2005) J Polym Sci, Part B: Polym Phys 43(1):107CrossRefGoogle Scholar
  11. 11.
    Lan T, Kaviratna PD, Pinnavaia TJ (1995) Chem Mater 7:2144CrossRefGoogle Scholar
  12. 12.
    Yoon JT, Jo WH, Lee MS, Ko MB (2001) Polymer 42:329CrossRefGoogle Scholar
  13. 13.
    Kader MA, Nah C (2004) Polymer 45:2237CrossRefGoogle Scholar
  14. 14.
    Arroyo M, Lopez-Manchado MA, Herrero B (2003) Polymer 44:2447CrossRefGoogle Scholar
  15. 15.
    Brown MJ, Curliss D, Vaia RA (2000) Chem Mater 12:3376CrossRefGoogle Scholar
  16. 16.
    Tjong SC, Meng YZ, Hay AS (2002) Chem Mater 14:44 494CrossRefGoogle Scholar
  17. 17.
    Fornes TD, Hunter DL, Paul DR (2004) Macromolecules 37:1793CrossRefGoogle Scholar
  18. 18.
    Choi YS, Ham HT, Chung IJ (2004) Chem Mater 16:2522 496CrossRefGoogle Scholar
  19. 19.
    Zhang H, Wang Y, Wu Y, Zhang L, Yang J (2005) J Appl Polym Sci 97:844CrossRefGoogle Scholar
  20. 20.
    Chan CM, Wu JS, Li JX, Cheung YK (2002) Polymer 43:2981–2992CrossRefGoogle Scholar
  21. 21.
    Gopinath CS, Hedge SG, Ramaswamy AV, Mahapatra S (2002) Mater Res Bull 37:1323CrossRefGoogle Scholar
  22. 22.
    Mishra S, Shimpi NG (2005) J Sci Ind Res 41:744Google Scholar
  23. 23.
    Mishra S, Shimpi NG (2005) J Appl Polym Sci 98:2563CrossRefGoogle Scholar
  24. 24.
    Pathak A, Panda AB, Tarafdar A, Pramanik P (2003) J Indian Chem Soc 80:289 510Google Scholar
  25. 25.
    Mishra S, Sonawane SH, Badgujar N, Gurav K, Patil D (2005) J Appl Polym Sci 96:6 512CrossRefGoogle Scholar
  26. 26.
    Manchando MA, Herrero B, Arroyo M (2003) Polym Int 52:1070CrossRefGoogle Scholar
  27. 27.
    Usuki A, Koiwai A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurachi T, Kamigaito O (1993) J Mater Res 8(5):1179Google Scholar
  28. 28.
    Kim JT, Oh T-S, Lee D-H (2003) Polym Int 52:1058CrossRefGoogle Scholar
  29. 29.
    Chang Y-W, Yang Y, Ryu S, Nah C (2002) Polym Int 51:319CrossRefGoogle Scholar
  30. 30.
    Flory PJ (1953) In: Principles of polymer chemistry. Cornell University. Ithaca, New York 519Google Scholar
  31. 31.
    Chang YW, Yang Y, Ryu S, Nah C (2002) Polym Int 51:319CrossRefGoogle Scholar
  32. 32.
    Chen G, Lin S, Chen S, Qi Z (2001) Macromol Chem Phys 202:1189CrossRefGoogle Scholar
  33. 33.
    Fujiwara S, Sakamato T (1976) Kokai Patent SHO 51, 109998Google Scholar
  34. 34.
    Gilman JW (1999) App Clay Sci 15:31CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.University Department of Chemical TechnologyNorth Maharashtra UniversityJalgaon MSIndia

Personalised recommendations