Journal of Polymer Research

, Volume 14, Issue 2, pp 107–113 | Cite as

The Research of Radar Absorbing Property of Bicomponent Fibers with Infrared Camouflage

  • Bin Yu
  • Lu Qi
  • Jian-zhong Ye
  • Hui Sun


The bicomponent fibers were prepared for the radar absorbing and infrared camouflage. The fibers were melt-spun by co-extrusion of polypropylene (PP) and PP/fillers master-batches using general conjugate spinning. Master-batches were made up of mixture of PP chips and inorganic particle. The radar absorbing property was evaluated by an arch method. The fibers filled with the barium ferrite, Mn–Zn ferrite and bronze fillers had good radar absorbing effect. The input of infrared camouflage fillers in the sheath-part showed a limited effect on the radar wave absorbing properties of the bicomponent fibers. For the characterization, differential scanning calorimetry (DSC) and mass specific electrical resistance apparatus (MSERA) were used for analysis of thermal and crystallization behavior and electric performance of the spun-fibers. Scanning electron microscopy (SEM) was carried out to observe particle distribution on the bicomponent fibers.

Key words

bicomponent fibers polypropylene property radar absorbing infrared camouflage 


  1. 1.
    K. J. Vinoy and R. M. Jha, Radar Absorbing Materials from Theory to Design and Characterization, Kluwer, Boston, 1996.Google Scholar
  2. 2.
    R. A. Stonier, SAMPE J., 27, 9 (1991).Google Scholar
  3. 3.
    F. Osamu and K. Kei, Electr. Eng. Jpn., 138, 34 (2002).Google Scholar
  4. 4.
    J. I. Im, C. W. Kim and T. S. Oh, J. Korean Ceram. Soc., 6, 571 (1999).Google Scholar
  5. 5.
    X. L. Yu and X. C. Zhang, Mater Des., 23, 51 (2002).Google Scholar
  6. 6.
    Y. Sha, K. A. Jose and C. P. Neo, Microwave Opt. Technol. Lett., 32, 245 (2002).CrossRefGoogle Scholar
  7. 7.
    S. J. Pomfret, P. N. Adams, N. P. Comfort and A. P. Monkman, Synth. Met., 101, 724 (1999).CrossRefGoogle Scholar
  8. 8.
    D. Zabetakis, M. Dinderman and P. Schoen, Adv. Mater., 17, 734 (2005).CrossRefGoogle Scholar
  9. 9.
    S. H. Kim, J. H. Seong and K. W.,Oh, J. Appl. Polym. Sci., 83, 2245 (2002).CrossRefGoogle Scholar
  10. 10.
    S. K. Dhawan, N. Singh and S. Venkatachalam, Synth. Met., 129, 261 (2002).CrossRefGoogle Scholar
  11. 11.
    G. Jim, Eng. Technol., 7, 16 (2004).Google Scholar
  12. 12.
    G. A. Rao and S. P. Mahulikar, Aeronaut. J., 106, 629 (2002).Google Scholar
  13. 13.
    J. Brandrup, E. H. Immergut and E. A. Grulke, Polymer Handbook, Wiley, New York, 1999.Google Scholar
  14. 14.
    Y. Y. Sang and H. J. Sung, Polym. Int., 52, 1053 (2003).CrossRefGoogle Scholar
  15. 15.
    R. Faez, W. A. Gazotti and M. A. De Paoli, Polymer, 40, 5497 (1999).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Research Institute of Biological Spinning Materials, Tianjin Key Laboratory of Fiber Modification and Functional FiberTianjin Polytechnic UniversityTianjinChina
  2. 2.School of materials science and engineeringTianjin UniversityTianjinChina

Personalised recommendations