Journal of Polymer Research

, Volume 14, Issue 1, pp 67–73 | Cite as

The Binding of Anionic Dyes by Cross-Linked Cationic Starches

  • Rima Klimaviciute
  • Aurimas Riauka
  • Algirdas Zemaitaitis


Adsorption of anionic dyes on the cross-linked with epichlorohydrin starches containing quaternary ammonium groups (CCS) was investigated and compared with that of modified starches containing only quaternary ammonium groups (CS). The adsorption of anionic dyes on CS and CCS closely follows the Langmuir model of adsorption. The computed Langmuir saturation capacity Q o increases with increasing degree of substitution (DS) of CS or CCS and has the value from 0.81 mol/kg to 3.22 mol/kg for CCS and from 0.88 mol/kg to 1.87 mol/kg for CS. The effectiveness of the cationic groups in dye binding was about 1 mol/equiv for CSS with DS from 0.47 to 0.62 and all the cationic groups had attached one anionic groups of the dye. Increasing DS of CS decreases the effectiveness of dye binding due to the increase in solubility of CS, and the soluble part of CS binds the dye as a typical soluble polyelectrolyte. CCS are more suitable than CS for the anionic dye adsorption from a textile dyeing solution. DS of CCS should be about 0.5–0.6. They adsorb the anionic dyes in few minutes and acts in the wide range of pH of the solutions. The Langmuir saturation capacity Q o and the effectiveness of the cationic groups in dye binding increase with an increase of the adsorption temperature. The positive values of the enthalpy and entropy suggest that the adsorption is endothermic and during the adsorption of the anionic dye on CCS the randomness of the system increases.

Key words

adsorption anionic dye cationic starch cross-linked starch Langmuir isotherm 


AB 25

C. I. Acid Blue 25

AB 78

C. I. Acid Blue 78

AO 7

C. I. Acid Orange 7

AO 52

C. I. Acid Orange 52

AR 151

C. I. Acid Red 151

AY 36

C. I. Acid Yellow 36


anhydroglucoside unit of starch


degree of substitution


cationic starch


cationic cross-linked starch


effectiveness of the cationic groups




water-soluble cationic starch


saturation capacity


the change in free energy


the change in enthalpy


the change in entropy


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Forgacs, T. Cserhati and G. Oros, Environ. Int., 30, 953 (2004).CrossRefGoogle Scholar
  2. 2.
    G. Carvalho, W. Delee, J. M. Novais and H. M. Pinheivo, Color. Technol., 118, 215 (2002).CrossRefGoogle Scholar
  3. 3.
    J. H. Choi, W. S. Shin, S. H. Lee, D. J. Joo, J. D. Lee, S. J. Choi and L. S. Park, Separ. Sci. Technol., 36, 2945 (2001).CrossRefGoogle Scholar
  4. 4.
    R. J. Zemaitaitiene, E. Zliobaite, R. Klimaviciute and A. Zemaitaitis, Colloid Surf. A, 214, 37 (2003).CrossRefGoogle Scholar
  5. 5.
    J. N. Wu and T. W. Wang, Environ. Sci. Health, Part A, 36, 1335 (2001).CrossRefGoogle Scholar
  6. 6.
    G. Crini, Bioresour. Technol., 97, 1061 (2006).CrossRefGoogle Scholar
  7. 7.
    O. Yavuz and A. H. Aydin, Fresenius Environ. Bull., 11, 377 (2002).Google Scholar
  8. 8.
    M. M. Davila–Jimenez, M. P. Elizalde–Gonzalez and A. A. Palaez–Cid, Colloid Surf., A, 254, 107 (2005).CrossRefGoogle Scholar
  9. 9.
    H. C. Chu and K. M. Chen, Process. Biochem., 37, 595 (2002).CrossRefGoogle Scholar
  10. 10.
    C. Namasivayam and D. Kavitha, Dyes Pigm., 54, 47 (2002).CrossRefGoogle Scholar
  11. 11.
    K. Nakagawa, A. Namba, S. R. Mukai, M. Tamon, P. Ariyadejwanich and W. Tanthapanichakoon, Water Res., 38, 1791 (2004).CrossRefGoogle Scholar
  12. 12.
    P. C. C. Faria, J. J. M. Orfav and F. R. M. Pereira, Water Res., 38, 2043 (2004).CrossRefGoogle Scholar
  13. 13.
    F. C. Wu, R. L. Tseng and R. S. Juang, J. Hazard Mater., 373, 63 (2000).CrossRefGoogle Scholar
  14. 14.
    M. S. Chiou and H. Y. Li, Chemosphere, 50, 1095 (2003).CrossRefGoogle Scholar
  15. 15.
    M. S. Chiou, P. Y. Ho and H. Y. Li, Dyes Pigm., 60, 69 (2004).CrossRefGoogle Scholar
  16. 16.
    M. I. Khalil and A. A. Aly, J. Appl. Polym. Sci., 93, 227 (2004).CrossRefGoogle Scholar
  17. 17.
    A. Nechwatal, M. Nikolai and K. P. Mieck, Starch, 51, 286 (1999).CrossRefGoogle Scholar
  18. 18.
    I. Simkovic, J. A. Laszlo and A. R. Thompson, Carbohydr. Polym., 30, 25 (1996).CrossRefGoogle Scholar
  19. 19.
    F. Delval, G. Crini, N. Morin, J. Vebrel, S. Bertini and G. Torri, Dyes Pigm., 53, 79 (2002).CrossRefGoogle Scholar
  20. 20.
    I. Simkovic, Carbohydr. Polym., 31, 47 (1996).CrossRefGoogle Scholar
  21. 21.
    R. Klimaviciute, Fibres Text. East. Eur., 12, 74 (2004).Google Scholar
  22. 22.
    S. M. Xu, S. Feng, F. Yue and J. D. Wang, J. Appl. Polym. Sci., 92, 728 (2004).CrossRefGoogle Scholar
  23. 23.
    Y. S. Li, C. C. Liu and C. S. Chiou, J. Colloid Interface Sci., 237, 95 (2004).CrossRefGoogle Scholar
  24. 24.
    M. Aoyama, M. Kishino and T. S. Jo. Separ. Sci. Technol., 3, 1149 (2004).Google Scholar
  25. 25.
    J. Bajpai, R. Shrivastava and A. K. Bajpai, Colloids Surf., 236, 81 (2004).CrossRefGoogle Scholar
  26. 26.
    S. M. Xu, J. Wei, S. Feng, J. D. Wang and X. S. Li, J. Polym. Res., 11, 211 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Rima Klimaviciute
    • 1
  • Aurimas Riauka
    • 1
  • Algirdas Zemaitaitis
    • 1
  1. 1.Department of Organic TechnologyKaunas University of TechnologyKaunasLithuania

Personalised recommendations