Advertisement

Journal of Polymer Research

, Volume 13, Issue 5, pp 379–385 | Cite as

A Method for Improving Ionic Conductivity of Nafion Membranes and its Application to PEMFC

  • Hsiu-Li Lin
  • T. Leon Yu
  • Fang-Hsin Han
Article

Abstract

In this paper, we show that proton conductivity and PEMFC performance of Nafion membranes prepared by solutions casting can be improved by aligning the side cahin ionic aggregations along the membrane thickness direction using an electric field. The nano-structures of Nafion membranes prepared by solutions casting with applying an electric field were investigated using transmission electron microscopy (TEM), which clearly shows fibril-like structures of Nafion molecular aggregations aligned along the electric field. The alignment of ionic aggregations along the membrane thickness direction causes linear and less curved proton transferring pathways across the membrane cross section and thus a higher proton conductivity and a better PEMFC performance.

Key words

Nafion electric field TEM fuel cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. G. F. Grot, Nafion as a separator in electrolytic cells, Nafion perfluoronated membranes product bulletin, Du Pont Co, Wilmington, DE, 1986.Google Scholar
  2. 2.
    F. G. Will, J. Electrochem. Soc., 126, 36 (1979).CrossRefGoogle Scholar
  3. 3.
    R. S. Yeo and D. T. Chin, J. Electrochem. Soc., 127, 549 (1980).CrossRefGoogle Scholar
  4. 4.
    N. Kakuta, K. H. Park, M. F. Finlayson, A. Ueno, A. J. Bard, A. Campion, M. A. Fox, S. E. Webber and J. M. White, J. Phys. Chem., 89, 732 (1985).CrossRefGoogle Scholar
  5. 5.
    W. G. Grot and F. Chadds, Eur. Patentbl., 0,066,369 (1982).Google Scholar
  6. 6.
    H. W. McCain, L. L. Benezra and C. E. Finch, Eur. Patentbl., 0,079,218 (1983).Google Scholar
  7. 7.
    I. Rubinstein and A. J. Bard, J. Am. Chem. Soc., 102, 6641 (1980).CrossRefGoogle Scholar
  8. 8.
    R. B. Moore and C. R. Martin, Anal. Chem., 58, 2569 (1986).CrossRefGoogle Scholar
  9. 9.
    R. B. Moore and C. R. Martin, Macromolecules, 21, 1334 (1988).CrossRefGoogle Scholar
  10. 10.
    G. Gebel, P. Aldebert and M. Pineri, Macromolecules, 20, 1425 (1987).CrossRefGoogle Scholar
  11. 11.
    J. Weber, P. Janda and L. Kavan, Electrochemical, J. Electroanal Chem., 199, 81 (1986); 200, 379 (1986).CrossRefGoogle Scholar
  12. 12.
    K. Amundson, E. Helfand, D. D. Davis, X. Quan and S. S. Patel, Macromolecules, 24, 6546 (1991).CrossRefGoogle Scholar
  13. 13.
    T. L. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky and T. P. Russel, Science, 271, 931 (1996).CrossRefGoogle Scholar
  14. 14.
    P. Alderbert, B. Dreyfus and M. Pineri, Macromolecules, 19, 265 (1986).Google Scholar
  15. 15.
    B. Loppinet, G. Gebel and C. E. Williams, J. Phys. Chem., B, 101, 188 (1997).CrossRefGoogle Scholar
  16. 16.
    E. Szajdzinska-Pietek and S. Schlick, Langmuir, 10, 1101; 2188 (1994).Google Scholar
  17. 17.
    H. Li and S. Schlick, Polymer, 36, 1141 (1995).CrossRefGoogle Scholar
  18. 18.
    P. A. Cirkel, T. Okada and S. Kinugasa, Macromolecules, 32, 531 (1999).CrossRefGoogle Scholar
  19. 19.
    S. Jiang, K. Q. Xia and G. Xu, Macromolecules, 34, 7783 (2001).CrossRefGoogle Scholar
  20. 20.
    S. J. Lee, T. L. Yu, H. L. Lin, W. H. Liu and C. L. Lai, Polymer, 45, 2853 (2004).CrossRefGoogle Scholar
  21. 21.
    E. J. Roche, M. Pineri, R. Duplessix and A. M. Levelut, J. Polym. Sci., Polym. Phys. Ed., 19, 1 (1981).CrossRefGoogle Scholar
  22. 22.
    T. D. Gierke, G. E. Munn and F. C. Wilson, J. Polym. Sci., Polym. Phys. Ed., 19, 1687 (1981).CrossRefGoogle Scholar
  23. 23.
    M. Fujimura, T. Hashimoto and H. Kawai, Macromolecules, 14, 1309 (1981).CrossRefGoogle Scholar
  24. 24.
    M. Fujimura, T. Hashimoto and H. Kawai, Macromolecules, 15, 136 (1982).CrossRefGoogle Scholar
  25. 25.
    S. Kumar and M. Pineri, J. Polym. Sci., Polym. Phys. Ed., 24, 1767 (1986).CrossRefGoogle Scholar
  26. 26.
    J. Halim, G. G. Scherer and M. Stamm, Macromol. Chem. Phys., 195, 3783 (1994).CrossRefGoogle Scholar
  27. 27.
    J. A. Elliot, S. Hanna, A. M. S. Elliot and G. E. Cooley, Macromolecules, 33, 4161 (2000).CrossRefGoogle Scholar
  28. 28.
    G. Gebel and J. Lambard, Macromolecules, 30, 7914 (1997).CrossRefGoogle Scholar
  29. 29.
    G. Gebel, Polymer, 41, 5829 (2000).CrossRefGoogle Scholar
  30. 30.
    H. W. Starkweather, Macromolecules, 15, 320 (1982).CrossRefGoogle Scholar
  31. 31.
    M. H. Litt, Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.), 38, 80 (1997).Google Scholar
  32. 32.
    L. Rubatat, A. L. Rollet, G. Gebel and O. Diat, Macromolecules, 35, 4050 (2002).CrossRefGoogle Scholar
  33. 33.
    L. Rubatat, G. Gebel and O. Diat, Macromolecules, 37, 7772 (2004).CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Chemical Engineering & Materials ScienceYuan Ze UniversityTaoyuanTaiwan
  2. 2.Fuel Cell CenterYuan Ze UniversityTaoyuanTaiwan

Personalised recommendations