Journal of Polymer Research

, Volume 7, Issue 4, pp 257–266 | Cite as

Physical aging of epoxy resin blended with poly(ether sulfone): Effect of poly(ether sulfone) molecular weight



The physical aging process of 4-4′-diaminodiphenylsulfone (DDS) cured diglycidyl ether bisphenol-A (DGEBA) blended with various molecular weights of poly(ether sulfone) (PES; Mn = 28,600, 10,600, and 6,137) was studied by DSC. For DGEBA/DDS system blended with a low MW PES-3 (Mn = 6,137), no phase separation of the polymer blend and only one enthalpic relaxation process due to physical aging was observed. Since the high MW PES-1 (Mn = 28,600) had a Tg close to that of fully cured DGEBA/DDS, the fully cured DGEBA/DDS/PES-1 blend had a broader glass transition than a neat DGEBA/DDS system. However, the DSC results showed two enthalpic relaxation processes due to the physical aging of PES-rich and cured epoxy-rich phases as the material was aged at 155 °C (30 °C below Tg). Since the Tgs of PES-1-rich and epoxy-rich phases overlapped with each other, the enthalpic relaxation processes corresponding to each phase coupled to each other in the earlier stage of physical aging. The medium MW PES-2 (Mn = 10,600) has a much lower Tg than that of fully cured DGEBA/DDS, two well separated Tgs were observed for the cured DGEBA/DDS/PES-2 blend, indicating the cured epoxy was immiscible with PES. Aging the polymer blend at 155 °C (24 °C below Tg1 of the PES-2-rich phase and 53 °C below Tg2 of the epoxy-rich phase) produced two well separated relaxation processes due to PES-2-rich and epoxy-rich phases. The experimental results suggested that aging the polymer blend at a suitable temperature would improve the phase separation between PES-1-rich and epoxy-rich phases.


Poly(ether sulfone) Epoxy resin Physical aging DSC 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. C. E. Struik, Physical aging in amorphous polymers and other materials, Amsterdam, 1978.Google Scholar
  2. 2.
    A. S. Marshall and S. E. B. Petrie, J. Appl. Phys., 46, 4223 (1975).CrossRefGoogle Scholar
  3. 3.
    A. J. Kovacs, J. J. Aklonis, J. M. Hutchinson and A. R. Ramos, J. Polym. Sci., Polym. Phys. Ed., 17, 1097 (1979).Google Scholar
  4. 4.
    A. Agrawal, J. Polym. Sci., Polym. Phys., Ed., 27, 1449 (1989).Google Scholar
  5. 5.
    A. K. Doolittle, J. Appl. Phys., 39, 3369 (1963).Google Scholar
  6. 6.
    H. S. Chen and T. T. Wang, J. Appl. Phys., 52, 5898 (1981).Google Scholar
  7. 7.
    A. J. Kovacs, Adv. Polym. Sci., 3, 394 (1963).Google Scholar
  8. 8.
    Z. H. Ophir, J. A. Emerson and G. L. Wikes, J. Appl. Phys., 49, 5032 (1978).CrossRefGoogle Scholar
  9. 9.
    A. Buchman and D. Katz, Polym. Eng. Sci., 19, 923 (1979).CrossRefGoogle Scholar
  10. 10.
    R. J. Morgan, J. Appl. Polym. Sci., 23, 2711 (1979).CrossRefGoogle Scholar
  11. 11.
    J. Kaiser, Makromol. Chem., 180, 573 (1979).CrossRefGoogle Scholar
  12. 12.
    T. D. Chang and J. O. Brittan, Polym. Eng. Sci., 22, 1221 (1982).Google Scholar
  13. 13.
    E. S. Kong, Adv. Polym. Sci., 80, 125 (1986).Google Scholar
  14. 14.
    E. S. W. Kong, G. L. Wikes, J. E. McGrath, A. K. Banthia, Y. Mohajer and M. R. Tant, Polym. Eng. Sci., 21, 943 (1981).CrossRefGoogle Scholar
  15. 15.
    Y. G. Lin, H. Sautereau and J. P. Pascault, J. Appl. Polym. Sci., 32, 4595 (1986).CrossRefGoogle Scholar
  16. 16.
    I. C. Choy and D. J. Plazek, J. Polym. Sci., Polym. Phys. Ed., 24, 1303 (1986).Google Scholar
  17. 17.
    D. J. Plazek and I. C. Choy, J. Polym. Sci., Polym. Phys. Ed., 27, 307 (1989).Google Scholar
  18. 18.
    D. J. Plazek and Z. N. Frund, J. Polym. Sci., Polym. Phys. Ed., 28, 431 (1990).Google Scholar
  19. 19.
    A. Lee and G. B. McKenna, Polymer, 29, 1812 (1988).Google Scholar
  20. 20.
    A. Lee and G. B. McKenna, Polymer, 31, 423 (1990).Google Scholar
  21. 21.
    C. G’Sell and G. B. McKenna, Polymer, 33, 2103 (1992).Google Scholar
  22. 22.
    S. Montserrat, J. Appl. Polym. Sci., 44, 545 (1992).CrossRefGoogle Scholar
  23. 23.
    S. Montserrat, J. Polym. Sci., Polym. Phys. Ed., 32, 509 (1994).Google Scholar
  24. 24.
    J. M. Hutchinson, D. McCarthy, S. Montserrat and P. Cortes, J. Polym. Sci., Polym. Phys. Ed., 34, 229 (1996).Google Scholar
  25. 25.
    P. Cortes, S. Montserrat and J. M. Hutchinson, J. Appl. Polym. Sci., 63, 17 (1997).Google Scholar
  26. 26.
    A. Lee and G. B. McKenna, J. Polym. Sci., Polym. Phys. Ed., 35, 1167 (1997).Google Scholar
  27. 27.
    J. S. Shen, Z. Shao and S. Li, Polymer, 36, 3479 (1995).CrossRefGoogle Scholar
  28. 28.
    C. D. Breach, M. J. Folkes and J. M. Barton, Polymer, 33, 3080 (1992).CrossRefGoogle Scholar
  29. 29.
    J. M. G. Cowie and R. Ferguson, Macromolecules, 22, 2312 (1989).Google Scholar
  30. 30.
    J. L. Hedrick, PhD Thesis, Dept. of Chem., Virginia Polytech Institute, USA (1986).Google Scholar
  31. 31.
    P. K. Monhanty, J. L. Hedrick, K. Gobetz, B. C. Johnson, I. Yilgor, R. Yang and J. E. McGrath, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 23, 284 (1982).Google Scholar
  32. 32.
    R. B. Prime, Thermal Analysis in Polymer Characterization, E. Turi, Ed., Heyden, Pa., 1981.Google Scholar
  33. 33.
    I. M. Hodge and A. R. Berens, Macromolecules, 15, 762 (1982).CrossRefGoogle Scholar
  34. 34.
    J. L. Ribelles, R. D. Calleja, R. Ferguson and J. M. G. Cowie, Polymer, 28, 2262 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2000

Authors and Affiliations

  1. 1.Department of Chemical EngineeringYuan-Ze UniversityNei-Li, TaoyuanTaiwan

Personalised recommendations