Journal of Polymer Research

, Volume 6, Issue 3, pp 191–196 | Cite as

Properties of PVA-AA cross-linked HEMA-based hydrogels



Poly(HEMA) hydrogel is usually prepared by using 1,1,1-trimethylol propane trimethacrylate and ethylene glycol dimethacrylate as the crosslinkers. Another method using PVA-AA (polyvinyl alcohol partially esterified with acryloyl chloride) as the cross linker is reported here. Two hydrogels, co-A1H9 and co-A2H8, were prepared by the polymerization of HEMA in the presence of 10% and 20% PVA-AA, respectively. The presence of PVA-AA reduced the water content from 32% to 25% in the resultant copolymer, whereas Tg did not change significantly. Co-A1H9 had an elastic modulus of 6.3 Mpa, which is much higher than 3.9 MPa and 3.7 MPa for poly(HEMA) and co-A2H8, respectively. The interfacial energies of poly(HEMA), co-A1H9 and co-A2H8 were calculated to be 0.52, 0.65 and 0.71 dyne/cm2, respectively, whereas the fractional polarities of these three hydrogels were all about 0.74. Thus a HEMA-based hydrogel with surface properties similar to poly(HEMA) but with stronger mechanical strength was successfully prepared. This copolymeric hydrogel could provide a choice other than the conventionally cross linked poly(HEMA) for various applications.


HEMA Poly(vinyl alcohol) Acrylate ester Surface properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Burchzak, E. Gamian and A. Kochman, Biomaterials, 17, 2351 (1996).Google Scholar
  2. 2.
    T. H. Young, N. K. Yao, R. F. Chang and L. W. Chen, Biomaterials, 17, 2139 (1996).CrossRefGoogle Scholar
  3. 3.
    B. Vazquez, M. Gurruchaga and I. Goni, Polymer, 36, 2311 (1995).Google Scholar
  4. 4.
    T. H. Chieng, L. M. Gan and C. H. Chew, Polymer, 36, 1941 (1995).CrossRefGoogle Scholar
  5. 5.
    Y. Chu, P. P. Varanasi, M. J. McGlade and S. Varanasi, J. Appl. Polym. Sci., 58, 2161 (1995).CrossRefGoogle Scholar
  6. 6.
    W. N. E. Van Dijk-Wolthuis, J. A. M. Van Hoogeboom, M. J. Van Steenbergen, S. K. Y. Van Tsang and W. E. Van Hennink, Macromolecules, 30, 4639 (1997).Google Scholar
  7. 7.
    C. M. Lehr, J. A. Bouwstra, H. E. Bodde and H. E. Junginger, Pharmaceutical Res., 9, 70 (1992).Google Scholar
  8. 8.
    C. D. Young, J. Wu and T. L. Tsou, J. Membrane Sci., 146, 83 (1998).Google Scholar
  9. 9.
    G. L. (III) Grobe, P. L. Valint and D. M. Ammon, J. Biomedical Mater. Res., 32, 45 (1996).Google Scholar
  10. 10.
    Y. C. Lai, J. Appl. Polym. Sci., 66, 1475 (1997).CrossRefGoogle Scholar
  11. 11.
    S. H. Hyon, W. I. Cha, Y. Ikada, M. Kita, Y. Ogrua and Y. Honda, J. Biomater. Sci., Polym. Ed., 5, 397 (1994).Google Scholar
  12. 12.
    F. J. Liou, G. C. C. Niu, and Y. J. Wang, J. Appl. Polym. Sci., 46, 1967 (1992).CrossRefGoogle Scholar
  13. 13.
    M. Boisdron-Celle, P. Menei and J. P. Benoit, J. pharmacy & pharmacology, 47, 108 (1995).Google Scholar
  14. 14.
    P. Molyneux, Water-Soluble Synthetic Polymers, Vol. 1, Chapter 4, CRC Press, 1983.Google Scholar
  15. 15.
    T. Hirai, T. Asada, T. Suzuki and S. Hayashi, J. Appl. Polym. Sci., 38, 491 (1989).CrossRefGoogle Scholar
  16. 16.
    B. D. Ratner, In: D. F. Williams Ed., Biocompatibility of Clinical Implant Materials, Vol. II, Chapter 7, CRC Press, 1981.Google Scholar
  17. 17.
    D. Fairhurst and V. Ribitsch, Particle size distribution II: assessment and characterization, American Chemical Society, Washington, DC, 1991, Chapter 22.Google Scholar
  18. 18.
    W. C. Hamilton, J. Colloid Interface Sci., 40, 219 (1972).CrossRefGoogle Scholar
  19. 19.
    F. M. Fowkes, F. L. Riddle, E. E. Pastore and A. A. Weber, Colloids and Surfaces, 43, 367 (1990).CrossRefGoogle Scholar
  20. 20.
    J. D. Andrade, R. N. King, D. E. Gregonis and D. L. Coleman, J. Polym. Sci., Polym. Symp., 66, 313 (1979).Google Scholar
  21. 21.
    Y. C. Ko, B. D Ratner and A. S. Hoffman, J. Colloid Interface Sci., 83, 25 (1981).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 1999

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringI-Shou UniversityTaiwan, ROC
  2. 2.Institute of Biomedical EngineeringNational Yang Ming UniversityShih-Pai, TaipeiTaiwan, ROC

Personalised recommendations